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Control of Systems With Uncertain Initial Conditions

Mazen Farhood and Geir E. Dullerud

Abstract—This note deals with the control of linear discrete-time sys-
tems with uncertain initial conditions. Specifically, we consider the problem
where the initial condition is known to reside in a norm ball of some radius,
and the input disturbance is constrained to satisfy an independent norm
condition. The paper focuses on eventually periodic systems; these include
both finite horizon and periodic systems as special cases. The main theorem
provides exact synthesis conditions for the existence of eventually periodic
controllers which both stabilize and provide performance in closed-loop
control systems. These conditions are given in terms of a finite-dimensional
semidefinite programming problem. We also give a version of the main re-
sult for the special case of linear time-invariant systems with uncertain ini-
tial states, and conclude with an illustrative example.

Index Terms—Eventually periodic systems, linear matrix inequalities
(LMIs), orbits, time-varying systems, uncertain initial conditions.

I. INTRODUCTION

This note focuses on the control of linear discrete-time models with
uncertain initial conditions, where the constraints placed on both the
initial state and input disturbance are independent. The theory devel-
oped applies for linear time-varying (LTV) systems in general; how-
ever, as we seek finite dimensional synthesis results, we will focus our
efforts on a special class of LTV systems, namely that of eventually pe-
riodic systems, and in this respect, continue the work started in [1]–[3].
Eventually periodic systems are aperiodic for an initial amount of time,
and then become periodic afterwards. They contain both finite horizon
and periodic systems as special cases, and naturally arise when con-
trolling nonlinear systems along prespecified trajectories, notably those
which eventually settle down into periodic orbits and those with uncer-
tain initial states. We note that the results herein are novel even in the
special case of linear time-invariant (LTI) systems.

Specifically, given an eventually periodic discrete-time system with
an uncertain initial condition ��, we derive necessary and sufficient
conditions for the existence of an eventually periodic feedback con-
troller which achieves closed-loop stability as well as the performance
inequality (given in terms of 2-norms)
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�� ��������

���

��������� ����
� �� (1)

for some �, where � and � denote the exogenous disturbances and
errors respectively. It can be easily verified that
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Observe that the norm constraints placed on �� and � are indepen-
dent. The synthesis conditions are provided in terms of a finite dimen-
sional semidefinite programming problem; some seminal references on
semidefinite programming are [4], [5] and the comprehensive book [6]
which deals with various classes of convex optimization problems. We
also specialize the main result to the case of LTI systems with uncertain
initial states, and give an illustrative example.

The results here have potential uses in control problems involving
switched and hybrid systems [7], [8]. For instance, as proposed in [9],
one way to go about online path planning is to design a library of
pre-specified maneuvers and then appropriately switch between these
maneuvers online to generate the desired trajectory. Linearizing the
nonlinear system equations about these maneuvers results in a family
of finite horizon models composing a hybrid system. When the number
of constituent models is very large, it may be very advantageous from a
computational perspective to be able to design controllers for the con-
stituent models separately while still managing to ensure stability and
adequate performance. As we will not have in general accurate tra-
jectory tracking due to model uncertainties and disturbances, it could
prove very beneficial to design such controllers for plants with uncer-
tain initial conditions using the results of this paper.

The general machinery used to obtain the results of this note is moti-
vated by the work in [10]–[13], combined with the time-varying system
machinery developed in [14], [15]. The literature in the area of time-
varying systems is vast, and we refer the reader to [16] for a compre-
hensive list of general references. The LTV systems considered are al-
lowed to have time-varying state-space dimensions. This is useful as it
will be convenient for properly formulating the problem to have the ex-
ogenous disturbances vary in size over time. In addition, though it may
seem a bit unconventional, a time-varying state dimension may natu-
rally arise, for instance, when computing a minimal realization [17],
[18] or deriving a reduced model [19], [20].

II. PRELIMINARIES

The set of real �� � 	� matrices is denoted by � �� . If 
� is
a sequence of matrices, then 
����
�� denotes their block-diagonal
augmentation. The adjoint of an operator � is written ��, and we use
� � 
 to mean it is negative definite. Given a bounded sequence of
positive integers �� for � 	 
� �� �� � � �, we define the normed space

��

� � � � � � � � �� to consist of elements � 	 ���� ��� ��� � � ��,
with each �� � � , having a finite 2-norm ��� defined by
���� 	 �

���
����

� � �, where ����� 	 ����� . The notation

��

� � � � � � �� is abbreviated to 
� when the dimensions are not
relevant to the discussion. We use the notation ���� �� to denote
the 
�-induced norm of a bounded linear mapping � on 
�. Given
� � 
�, we define the unilateral shift operator � by
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Hence, � has the “infinite matrix” representation
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where the dimensions of the zero and identity matrices are de-
termined from the context. The adjoint of � is then defined by
��� � ���� ��� � � ��. We say a bounded linear operator � mapping
���

� � � � � � �� to ���
� � � � � � �� is block-diagonal if there

exists a sequence of matrices �� in � �� such that, for all �,
�, if � � ��, then �� � ���� . Then � has the representation
�������� ��� ��� � � ��. Observe that

�
�
�� � ����������� � � �� and

���
� � �����	� ��� ��� � � ���

III. PROBLEM FORMULATION

We start by giving a precise definition of an eventually periodic
operator.

Definition 1: An operator 	 on �� is �
� ��-eventually periodic if,
for some integers 
 � 	, � � 
, we have

�
� �����	�� � �����	��

�
�
�

Furthermore, 	 is called 
-eventually time-invariant when � � 
 and
�-periodic when 
 � 	.

So, a block-diagonal operator � is �
� ��-eventually periodic when
� has the representation ����������� � � � � ����� ��� ��� � � ��, where
�� � ������������� � � � � �������.

Let� be an LTV discrete-time system defined by the following state-
space equation:

����

��


�

�

�� ��� ���

��� ���� ����

��� ���� 	

��

��

��

�� �� 	 (2)

for � � ��, where the sequences of these real state-space ma-
trices define �
� ��-eventually periodic block-diagonal operators
�, ��, ��, and ��� for �, � � 
, 2; thus �, for instance, is
of the form � � �������� ��� � � � � ����� ��� ��� � � ��, where
�� � �������� ����� � � � � �������. The signals �� and �� denote

the exogenous disturbances and errors, respectively, whereas ��
denotes the applied control and 
� the measurements. The vectors �� ,
��, �� , 
�, and �� are real and have time-varying dimensions which
we denote by �� , ��� , �	� , �
� , and ��� respectively. Notice that
each matrix �� here has dimension ���� � ��.

We will say this system is stable when ���� has a bounded inverse;
this is equivalent to exponential stability as shown in [14]. Since plant
� is eventually periodic in our case, then its stability boils down to the
stability of its periodic part, and thus, � is (exponentially) stable if and
only if the spectral radius of the matrix given below is strictly less than
one (see [21]):

	 ������

�� 	
� ��
� �� � �������� ����� � � � � ��������

The following definition expresses our synthesis goal.
Definition 2: A discrete-time LTV feedback controller� , with zero

initial state and possibly time-varying dimensions, is a �-admissible
synthesis for plant � if the closed-loop system in Fig. 1 is stable and
the performance inequality (1) is achieved.

The operator theoretic machinery and results of [1], [15] are de-
veloped for LTV systems with zero initial conditions. As these refer-

Fig. 1. Closed-loop system.

ences constitute the basis for this work, it is hence convenient to con-
struct from � an isomorphic �
� 
� ��-eventually periodic system ��
having a zero initial condition. The uncertain initial condition �� from
� will be lumped with the disturbance � in this isomorphic system.
The state-space operators of ��, which we denote by block-diagonal
operators ��, ���, ��� and so on, are defined as follows: �� � ����,
��� � ����

�, ��� � ����
�, ���� � �����

� for �, � � 
, 2;
�� ���� � �� and ���� � �� . The system �� may be written more
compactly in operator form as

��

��

�


�

� �� � ��� � ���

���
����

����

���
���� 	

��

��

��

� (3)

where ��� � ��, �� �� � �, and �� � �� for � � �, �, �, 
. We may
then rephrase the synthesis objective as follows: a feedback controller
�� is a �-admissible synthesis for �� if the closed-loop system, denoted

by �� , is stable and further the square �� induced norm of �� , defined
by

� ���
� �� ���
�� �����	���

� �� ����

satisfies the performance condition � ���
� � �. Notice that if
� �� � �� � �� � �� � is the system realization for �� , then the
corresponding realization for controller � from Definition 2 is
��� �� �� �� �� �� �� �� �� �� �� ��.

IV. MAIN RESULTS

We start this section with an important theorem which follows from
the results of [15].

Theorem 3: The closed-loop performance inequality � ���
� � �

holds for some � if and only if there exist positive scalars �, ��, and ��,
and associated block-diagonal operators

� �� �������� ��� ��� � � �� and

� �� ��������� ���� ���� � � �� (4)

such that �� �� � �� � �� and ������ ��������� �� � 
�
Proof: Although the results of [15] are developed for LTV sys-

tems with constant dimensions and constant number of input and output
channels, these results can be immediately extended to the case of non-
stationary dimensions and time-varying number of channels. One easy
way to see this is by augmenting the state-space matrices of the LTV
system with zero blocks to accommodate for the time-varying dimen-
sions and number of channels. With this said, the isomorphic system
�� can be equivalently reformulated into an LTV system with two ex-
ogenous input channels and one exogenous output channel. Specifi-
cally, in addition to the disturbance input channel, we will have an-
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other input channel associated with the uncertain initial state. This ad-
ditional channel is only relevant at time � � �, where it has a value
of ��. As for the other time instants, the values of this channel are ir-
relevant as they would be annulled by the corresponding zero blocks
in the state-space matrices. On the other hand, the disturbance input
channel is only relevant at time instants � � �. Then, the “if” direction
follows immediately from [15, Theorem 3.4],. Since the product of the
number of exogenous input channels times the number of exogenous
output channels is 2, then invoking a version of [15, Theorem3.5], for
sequences in real spaces, as suggested by [15, Remark 3.6], proves the
“only if” direction.

Before stating the next result, we need to make a couple of defini-
tions. Suppose� is an ��� ��-eventually periodic block-diagonal oper-
ator, then we define �� to be the finite-horizon-first-period truncation
of �, namely �� �� ��	
������� � � � � �������. We also define

�� ��� �� ��	
���� � � � � ������� ���

and the set

�� � ��� �����	
������� � � � � ������� � � 	
��� �
� �� 	

We now give the main result of this note.
Theorem 4: Suppose that 
 is an ��� ��-eventually periodic system

with an uncertain initial condition ��. Then there exists a �-admissible
��� ��-eventually periodic synthesis� for 
 for some � if and only if
there exist positive scalars 
, ��, ��, �, �, and matrices ��, �� � �� such
that


� �� � �� � ��� �� � ���� (5)

��� �
�� �

� ��
�� �

�� ��� �

� 
�
�� � � (6)
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����� �

� ��
��

�� �

� ���
�� � �� (7)

�� �
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� ��
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� ��
� ��

� �

� 

� � (8)

where

� �
�� ���
��� ����

(9)

and

�� �� � ��� � ���� ����� � � ����� � ��

�� �� � ��� � ��� ���� � � ����� � �	

Proof: To start, consider the ����� ��-eventually periodic system
�
 defined in (3). This system is isomorphic to plant
, and as a result,
the existence of a �-admissible ��� ��-eventually periodic synthesis�
for 
 is equivalent to the existence of a �-admissible ��� �� ��-even-
tually periodic synthesis �� for �
. By Theorem 3, this is also equiv-
alent to saying that �� stabilizes the closed-loop system �� and fur-
ther achieves the inequality ������ ��������� �� � � for some �
and � , defined as in (4) with positive scalars 
, ��, and �� satisfying

� �� � �� � ��. In other words, a solution� exists if and only if a

1-admissible (or, simply, admissible) synthesis �� exists for the scaled
�� � �� ��-eventually periodic system

�
	 �
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��� �����
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�

(10)

for some � and � . Since the system �
	 has a zero initial con-
dition, then by [1, Theorem 15], �� exists if and only if, for all
� � �� �� � � � � � � �, there exist matrices �
 � �, �
 � �, and
������ � ����, ������ � ���� such that

���

��	


�
 �

� �
���	
�
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�
�� �

� �
��
 � � (11)
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�
�
�
�� �

� �
��	
 �

�
 �

� �
�� 
 � � (12)

�
 �

� �

� � (13)

where �� ��
 � ��� � ��	�
�


��	�
��
 �, �� �� 
 � ��� � ��	

�

��	
��
 �,

and ��	
 �
��	
 ��	

�


��	
�


��	
��


.

(Only if): Given an admissible synthesis �� , and hence inequalities
(11)–(13) hold for � � �� �� � � � � �� �, we now show that this implies
the validity of the synthesis conditions (5)–(8). To begin, it is not dif-
ficult to see that inequalities (11) and (12), evaluated at time � � �,
reduce respectively to the following conditions: (i) �� � ����� ; and
(ii) �� � ��� . Applying the Schur complement formula to the coupling
condition (13), we get �� � �

��

� ; this, together with � ��� � �����
from (ii), gives condition (i). Thus,�� � ����� is a redundant condi-
tion, and so at time � � �, inequalities (11) and (12) reduce to the con-
dition �� � ��� in (5), where �� � ��. We now focus on inequality
(11) for � � �� � � � � � � �. Setting �� � ��	
���� � � � � �����, then
from the definitions in (3) and (10), we can equivalently write (11) for
� � �� � � � � � � � as

 � !
�� �

� �
! � �

�� ��� �

� �
 � �

where

 �
� �

� 
����
��

and

! �
�� �

����
�

���

���� ��� �
���

���� ����

	

Some algebra leads to

��� �
�� �

� �



�
�� �

�� ��� �

� 
�
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where � is defined in (9). Similarly, setting �� � �������� � � � � ����	,
we can equivalently write (12) for � � 
� � � � � �� � as

��

� ��
�� ��	 



 �

�
	

��
�� 



 
�	
�� � 
�

Last, setting � � 


� and � � 

�, and noticing that these equalities
satisfy the pertinent coupling conditions in (8), complete the proof of
the “only if” direction.

(If): Given that the synthesis conditions (5)–(8) hold, we need to
show that a �-admissible synthesis � for plant � exists. Applying the
Schur complement formula to the second coupling condition in (8), we
get � � 


�, and hence we can write

�� 



 �

�
	
�

�� 



 �	
�

and as a result, we have

��

� �
�� 



 �

�
	

�� �
�� ��	 



 �	
��

� ��

� �
�� 



 �	
�� �

�� ��	 



 �	
��

� 
�

Similarly, applying the Schur complement formula to the third coupling
condition in (8), we get � � 

�, and consequently, we have

��

� ��
�� ��	 



 �

�
	

��
�� 



 
�	
�� � 
�

Applying the reverse argument to the one used in the “only if” proof,
we find that the preceding inequalities, together with �� � 
�	 and the
first coupling condition in (8), are equivalent to inequalities (11)–(13),
where ���� � �� and ���� � �� for � � 
� 
� � � � � �� �; note that
�� and �� are inconsequential here, and are only required to satisfy the
coupling condition (13), which is always possible. Thus, a �-admissible
synthesis � exists as argued at the beginning of this proof.

Solutions ��, ��, �, and 
� can then be used to construct an
��� �	-eventually periodic controller (with a zero initial condition). To
do so, first form the following ��� �	-eventually periodic system, which
is basically ��� from (10) sans the inconsequential part corresponding
to � � 
:

�� 

��	�
�

���
���

���	� ��� ��
�	
��	� ���� ���	� ����

��� 

��	�
�

���� 


�

Then, using �� and ��, follow the procedure outlined in [1], [14] to con-
struct an ��� �	-eventually periodic controller for this system.

Remark 5: From the preceding, it is clear that the initial condition
�� is implicitly regarded here as a separate input channel of a similar
nature to disturbance. With this in mind, it is sometimes convenient, as
demonstrated in the concluding example, to redefine this input channel
as ��� where �� � ����. In such a case, the performance inequality (1)
would involve ��� instead of ��, and the synthesis condition �� � 
�	
in Theorem 4 should be replaced with ����� � 
�	 .

Like in the case of zero initial states, if the synthesis conditions in
Theorem 4 are invalid, we can only say that there exists no �-admis-
sible ��� �	-eventually periodic synthesis; but this does not necessarily
imply the nonexistence of a different �-admissible synthesis. Using a

Fig. 2. Two-mass rotational system.

similar argument to that of the proof of [1, Lemma 7], it can be shown
that, when it comes to eventually periodic plants, there exists a �-ad-
missible LTV synthesis if and only if there exists an eventually periodic
one, having the same periodicity as the plant but probably a longer
finite horizon. Now as an ��� �	-eventually periodic plant � is also
��� �	-eventually periodic for all integers � � �, then if no �-ad-
missible ��� �	-eventually periodic synthesis for � exists, we may still
utilize the synthesis conditions of Theorem 4 as part of an algorithm
to find, if possible, an ��� �	-eventually periodic controller for some
� � �. Alternatively, given a stabilizable and detectable ��� �	-even-
tually periodic plant� (which basically means that the periodic portion
of � is stabilizable and detectable), consider an increasing integer se-
quence of finite horizon lengths�
 for � � 
� 
� �� � � �, where�� � �.
Then, as � is ��
� �	-eventually periodic, it is always possible to use
Theorem 4 to solve for a �
-admissible ��
� �	-eventually periodic syn-
thesis, where �
 denotes the minimum �, up to a certain tolerance,
that is achievable by an ��
� �	-eventually periodic controller. Namely,
the aforesaid synthesis is obtained by solving the convex optimization
problem: minimize � subject to synthesis conditions (5)–(8) reformu-
lated for an ��
� �	-eventually periodic plant. It is obvious that solving
this optimization problem for all �
 would result in a non-increasing
sequence of optimal values �
, which could be used as a guideline for
choosing a synthesis of reasonable size and performance.

Clearly, an LTI system is an ��� �	-eventually periodic system with
� � 
 and � � 
. With this said, the next result follows immediately
from Theorem 4.

Corollary 6: Suppose that � is an LTI system with an uncertain
initial condition, and state-space matrices �, �
, �
, �
� for �, � � 
,
2, with ��� � 
. Then, given a non-negative integer � , there exists
a �-admissible � -eventually time-invariant synthesis � for some � if
and only if, for all � � 
� 
� � � � � � , there exist positive scalars �, 
�,

�, �, �, matrices �� � 
, �� � 
, and ���� � �� , ���� � �� ,
such that

�� 
� � 
� � ��� �� � 
�	�

��

� �
�� 



 �	
�� �

���� 



 �	
�� � 
�

��

� ��
���� 



 �	
��

�� 



 
�	
�� � 
�

�� 	

	 ��
� 
�

� 



 
�
� 
�

� 



 �
� 
 (14)

where � �
� ��

�� ���

, �� �� � ��� ���� ��

�� �, �
�

��� � 	 ,

�� �� � ��� ��� ��� �, and ��

��� � 	 .
Note that an LTI system with an uncertain initial condition is isomor-

phic to a 1-eventually time-invariant system having a zero initial state.
Hence, given such a system, it is very conceivable that an� -eventually
time-invariant controller, for� � 
, would provide better performance
than an LTI one. We give an example of such a system next.
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Fig. 3. LTI (dotted curve) versus 1-eventually time-invariant (solid curve) versus 1000-eventually time-invariant (dashed curve).

V. ILLUSTRATIVE EXAMPLE

Our primary goal in this section is to provide a simple example il-
lustrating the approach of the paper. Consider the two-mass rotational
system in Fig. 2. The state variables �� and �� denote the angular dis-
placements of the bodies �� and ��, respectively, with respect to some
common reference. The system is in a stable equilibrium state when
�� � �� and the angular velocities ��� � ��� � �. The control input is
the torque � applied to the body ��. Suppose that the inertias �� � �,
�� � ���, the spring constant � � �����, and the damping coeffi-
cient � � ������. Given that the system is initially in an equilibrium
state with the specific values of the angular displacements uncertain,
then, using the synthesis approach herein, we would like to find a dis-
crete-time controller, with a sampling period � � �, that would bring
the system to the equilibrium position �� � �� � �. Suppose that the
measurable output is only ��. Then, setting � � ���	 ���	 ��	 ���	, we
can write the following continuous-time state space equations:

�� �

� � � �

� �

�
� �

�

�

�

�

�

� � � �
�

�

�

�
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�
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�

�

�


�

�

�
�

�

�

�	


 ���� � � � � � � � ��

The corresponding discrete-time model obtained by zero-order hold
sampling is given by

���� � ��� 

���	

where �� � ���� 	, � � � is the sampling period, � � 
������ 	
and


� �
�

�


�� ����� � � 		�� 
��

We assume that the disturbances are in the form of control inaccura-
cies �� which do not exceed 10% of the desired control torque at each
time instant, i.e., ����� � ������� for all � � �. As for the exogenous

errors to be controlled, we choose to equally penalize �� and �. Set-
ting �� � ��� , the preceding leads to the following discrete-time LTI
model:

����
��

�

�

� 
� 
�

�� � ���

�� � �

��
��

��

where 
� � 
�, �� � ��, �� �
� � � �

� � � �
, and ��� �

�

�
.

Appealing to Remark 5, we define ��� � ����	, and hence �� � ����
with � � � � � � � ��. Then, using SeDuMi [22] along with the
interface [23], we solve the convex optimization problem: minimize �
subject to linear matrix inequalities (LMIs) (14) for � � �,1,1000,
where the condition � � ��� is replaced with ���� � ��� . We ob-
tain the optimal values ���� � �����, 4.65, 4.65, respectively. Notice
that, for this example, the performance is significantly improved if we
employ a 1-eventually time-invariant controller instead of an LTI one,
whereas no notable change occurs when the finite-horizon length of the
controller is made much larger than one. This is clearly shown in Fig. 3
which gives the simulation results for the case where ����	 � ����
and ��� � ����� for all �. All computations are carried out in Matlab
7.1, using SeDuMi 1.1R3, on a Dell XPS laptop with Intel Core Duo 2
GHz processor and 1 GB of RAM running Windows XP. The elapsed
(i.e., wall clock) times for solving these optimization problems are
0.2sec, 0.6sec, and 14.5min for � � �,1,1000 respectively.

VI. CONCLUSION

This note solves the ��-induced control problem for eventually peri-
odic systems with uncertain initial states. Specifically, we derive exact
conditions for the existence of a synthesis of the same eventually peri-
odic class as the plant. This synthesis stabilizes the closed-loop system
and further achieves a performance condition, in which the norm con-
straints placed on the uncertain initial state and the input disturbance
are independent. A version of the main result is given for the special
case of LTI systems, and an illustrative example is also provided.
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Control Algorithms Along Relative Equilibria of
Underactuated Lagrangian Systems on Lie Groups

Nikolaj Nordkvist and Francesco Bullo, Senior Member, IEEE

Abstract—We present novel algorithms to control underactuated me-
chanical systems. For a class of invariant systems on Lie groups, we design
iterative small-amplitude control forces to accelerate along, decelerate
along, and stabilize relative equilibria. The technical approach is based
upon a perturbation analysis and the design of inversion primitives and
composition methods. We illustrate the algorithms on an underactuated
planar rigid body and on a satellite with two thrusters.

Index Terms—Mechanical systems, nonlinear control, relative equilibria,
underactuated systems.

I. INTRODUCTION

In this technical note we study control of underactuated mechanical
systems on Lie groups. We focus on the particular class of motions
called relative equilibria. A relative equilibrium is a motion for which
the body-fixed velocity is constant while no control forces are applied;
thus when referring to a relative equilibrium a specific body-fixed ve-
locity is implied. Accelerating/decelerating along a relative equilibrium
means increasing/decreasing the velocity in the direction of a relative
equilibrium while the configuration behaves accordingly. We concen-
trate on the construction of small-amplitude control forces that, when
used iteratively, result in a given acceleration/deceleration along a rel-
ative equilibrium; stabilization is achieved as zero acceleration. Pertur-
bation analysis and Lie group theory play a crucial role in the analysis.
Example systems to which the theory applies are a hovercraft, modeled
as an underactuated planar rigid body, and a satellite with two thrusters.

The motivation for studying underactuated mechanical systems is
twofold. First, control algorithms for underactuated systems enable
more general control designs than those in fully actuated systems, e.g.,
less costly designs or lighter designs. Second, control algorithms for
underactuated systems are applicable in the situation of an actuator
failure and, therefore, they improve robustness of the control system;
this robustness is crucial in case the vehicle is in a hazardous environ-
ment or is hardly accessible (e.g., a satellite).

A vast literature is available on mechanical control systems. Exten-
sive research has focused on underactuated mechanical systems, es-
pecially in the context of controlled Lagrangians and Hamiltonians,
e.g., see [1], [2] and subsequent works. Somehow less research is avail-
able for controlling systems along relative equilibria; a related spin-up
problem is considered in [3], the theory of kinematic reductions is ex-
posed in [4]. Since this document builds directly upon the work in [5]
we refer the reader to that document for a literature survey relevant
for control algorithms for underactuated Lagrangian systems on Lie
groups. A generalization of the theory in [5] to a larger class of me-
chanical systems can be found in [6]. An advantage of our approach
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