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Model Reduction of Nonstationary LPV Systems
Mazen Farhood and Geir E. Dullerud

Abstract—This paper focuses on the model reduction of non-
stationary linear parameter-varying (NSLPV) systems. We pro-
vide a generalization of the balanced truncation procedure for the
model reduction of stable NSLPV systems, along with a priori error
bounds. Then, for illustration purposes, this method is applied to
reduce the model of a two-mass translational system. Furthermore,
we give an approach for the model reduction of stabilizable and
detectable systems, which requires the development and use of co-
prime factorizations for NSLPV models. For the general class of
eventually periodic LPV systems, which includes periodic and fi-
nite horizon systems as special cases, our results can be explicitly
computed using semidefinite programming.

Index Terms—Balanced truncation, coprime factors reduction,
linear parameter-varying (LPV) systems, model reduction, time-
varying systems.

I. INTRODUCTION

THIS paper deals with the model reduction of nonstationary
linear parameter-varying (NSLPV) systems. Our interest in

LPV models is motivated by the desire to control nonlinear sys-
tems along prespecified trajectories. LPV models arise naturally
in such scenarios as a method to capture the possible nonlinear
dynamics, while maintaining a model that is amenable to control
synthesis. Frequently, when pursuing such an LPV formulation,
one ends up with models of relatively large dimension. Accord-
ingly, finding control syntheses for such models, which usually
involves solving a number of linear operator inequalities as dis-
cussed in [1], requires substantial computation. For this reason,
developing a theory that provides systematic methods of approx-
imating such models is beneficial. Our methods may also be of
potential use in situations (for instance dynamical networks)
where the topological structure is to be preserved.

Specifically, the types of plant models we consider in this
paper are of the form

where , and are matrix-valued
functions that are known a priori. The variable is time, and

is a vector of real scalar parame-
ters. In this paper, we are concerned only with the subclass of
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NSLPV models in which the dependence of the matrix func-
tions , and on the parameters is rational and given
in terms of a feedback coupling. Such models are commonly
referred to as LFT systems and are basically the straightforward
generalization of the LPV systems first introduced in [2], [3].
These models can be interpreted in at least two interesting ways.
First, as stated before, NSLPV models arise naturally in control
problems of nonlinear systems along prespecified trajectories;
in such a case, the parameters are not uncertain but rather
available for measurement at each time . Alternatively, such
models can be regarded as linear time-varying (LTV) plants
subject to parametric time-varying uncertainty ; these have
uses in LTV robust control problems.

The paper focuses on the model reduction of stable as well as
stabilizable and detectable NSLPV models. In the case of stable
models, we utilize the theory of generalized gramians to define
the notion of balanced realizations for NSLPV systems. We also
examine the balanced truncation method in detail and derive
error bounds for such a reduction process. These error bounds
are generalizations of their LTV counterparts given in [4], [5],
and even in the standard time-varying case, the main results here
can give tighter error bounds than what is currently available. We
demonstrate the applicability of these results in an example of a
two-mass translational system. As for stabilizable and detectable
models, the approach used is motivated by the work in [6], [7],
where a coprime factorization method for reducing generalized
state-space systems containing stationary LPV and uncertain
systems is proposed; the method itself is a generalization of
the work in [8] for standard systems. Also, we specialize these
results to the subclass of eventually periodic LPV models
introduced in [1]; these are aperiodic for an initial amount of
time and contain both finite horizon and periodic systems as
special cases. The contributions of the paper are as follows.

• Generalization of the balanced truncation model reduction
procedure as well as the coprime factors reduction method
to the class of NSLPV systems.

• Several results on the worst-case balanced truncation error.
These results when restricted to the purely time-varying
case (i.e., no parameters) provide the least conservative
error bounds currently available in the literature.

• Operator theoretic machinery is developed in the context
of standard robust control tools for working with NSLPV
models.

This paper deploys a combination of recent work on NSLPV
models in [1] and new work on model reduction using balanced
truncation for standard LTV systems in [4], [5]. The approach is
motivated by the work in [9] on the generalization of balanced
truncation to stationary multidimensional systems, and that in
[10] on discrete time model reduction of standard LTI systems.
The basic approach behind balanced truncation originates in
[11], and the by-now famous error bounds associated with this
method in the LTI case were first demonstrated in [12], [13].
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The paper is organized as follows: In Section II, we estab-
lish notation and collect some needed definitions; in Section III,
we introduce NSLPV models and discuss well-posedness and
two forms of stability; in Section IV, we provide the balanced
truncation procedure and prove the error bound results of the
paper; in Section V, we apply the balanced truncation results to
a two-mass translational system exhibiting eventually periodic
dynamics; in Section VI, we generalize the coprime factors re-
duction method to the class of NSLPV systems; we then con-
clude with a summary statement.

II. PRELIMINARIES

The set of real matrices and that of real symmetric
matrices are denoted by and respectively. The

maximum singular value of a matrix is denoted by .
The main Hilbert space of interest in this paper

is formed from an infinite sequence of Euclidean
spaces , and is denoted by

, or just for short. It is defined
as the subspace of the Hilbert space direct sum
consisting of elements , with each

, such that . The
inner product of in is hence defined as the sum

. Another Hilbert space of interest
here is the direct sum of the aforementioned Hilbert spaces,
namely , for some .
The linear space will be denoted by , and
another linear space used is .
When the spatial structure and dimensions are either evident
or irrelevant to the discussion, we will often abbreviate these
denotations simply by and .

Given and , which represent any two of the previously de-
fined Hilbert spaces, we denote the space of bounded linear op-
erators mapping to by , and that of bounded linear
causal operators by . We shorten these notations to

and when equals . When the spatial structures
and dimensions are not pertinent to the discussion, we simply
use the notations and . If is in , we de-
note the to induced norm of by ; when the
spaces involved are obvious, we write simply . The adjoint
of is written . When an operator is self-adjoint,
we use to mean it is negative definite; that is there exists
a number such that, for all nonzero , the inequality

holds. Given any two of the previous linear
spaces, which we call and for simplicity, we define the al-
gebra to be the space of linear causal operators map-
ping to , and equipped with the pointwise topology with
respect to the standard matrix representation. Similar abbrevia-
tions as before apply to this space.

A key operator used in the paper is the unilateral shift ,
defined as follows:

Clearly, this definition is extendable to , and in the sequel, we
will not distinguish between these mappings. If is a sequence

of operators, then denotes their block-diagonal aug-
mentation. Given a time-varying dimension , we define the
notation , where is an

identity matrix.
Following the notation and approach in [14], we make the

following definitions. First, we say a linear operator mapping
to is block-diagonal if

there exists a sequence of matrices in such
that, for all , if , then . Then,
has the representation . A diagonal
operator is a block-diagonal operator where each of the matrix
blocks is diagonal.

Suppose , and are block-diagonal operators, and let
be a partitioned operator of the form

Then, we define the following notation:

which we call the diagonal realization of . Clearly, for any
given operator of this particular structure, is simply
with the rows and columns permuted appropriately so that

From this definition, it is easy to see that
and hold for appropriately dimensioned oper-
ators, and similarly that holds if and only if ,
where is a scalar. Namely, the operation is a homomor-
phism from partitioned operators with block-diagonal entries
to block-diagonal operators. Last, we will find the following
formal notation very useful:

where

III. NSLPV SYSTEMS

We now review NSLPV models. The reader is referred
to [1] for further treatment of the theory. Let be a linear
time-varying discrete-time system defined by the following
state–space equation:

(1)

where and . The vector-valued signals
, and are real and have time-

varying dimensions, with the constraint that
. We denote the dimensions of these signals by

, and , respectively. We assume
that all the state space matrices are uniformly bounded functions



FARHOOD AND DULLERUD: MODEL REDUCTION OF NONSTATIONARY LPV SYSTEMS 183

Fig. 1. Interconnection of G with �(k).

of time. Given a scalar sequence and associated
dimensions satisfying ,
we define the diagonal matrix as

Also, we constrain for all . We will be
concerned with the arrangement in Fig. 1, where and are
connected in feedback. This system can be expressed formally
by

(2)

where

(3)

We assume such that is invertible for
all so that the LFT in (3) is well-defined at each time .
This well-posedness condition guarantees that there are unique
solutions in to (2). We will refer to the mapping in
(2) as the system . Hence, is a linear time-varying system
with rational state-space parameter dependence formulated in
an LFT framework, where the time-varying parameters act
on the system through the linear fractional feedback channels

.
Using the previously defined notation, clearly the matrix

sequences , and from (1) define
bounded block-diagonal operators. The blocks of the ma-
trix naturally partition and into separate
vector-valued channels, conformably with which we partition
the following state–space matrices, such that:

...
. . .

...

...
...

(4)

where
, and

. The matrix sequence of each of the elements of
the state space matrices in (4) defines a bounded block-diagonal

operator; and so we construct from the sequence of each of
these state space matrices a partitioned operator, each of whose
elements is block-diagonal and defined in the obvious way.
For instance, the matrix sequences define
block-diagonal operators that compose the partitioned operator

. With being the shift, we rewrite our system equations as

(5)

(6)

where
, and

We now introduce some convenient definitions and notations
that will be used extensively in the sequel. To start, we define

where is partitioned similarly to operator . Note that this
partitioning is also conformable to that of ,
where

Moreover, we define
and

is partitioned as in (6) and

We formally define the system by , where
and

When the relevant inverse exists, then is well-posed, in
which case we can rewrite (5) and (6) in the form ,
and hence can be viewed as a mapping in . The set of
systems for all defines an NSLPV model , which
we formally express as

The system realization of NSLPV mode will be denoted by
.

A. Well-Posedness

We now define a basic notion of well-posedness for NSLPV
models.

Definition 1: An NSLPV model is well-posed if is
invertible in for all .
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Proposition 2: The following are true.
i) Given a block-diagonal operator in , then

is invertible in .
ii) For all is invertible

in if and only if is invertible in .
The following proof of this proposition is inspired by those of
similar results in [7].

Proof: To start, it is not difficult to verify that the infinite
series defines a unique element in , which is
indeed the inverse of ; this proves part i) of the claim.

Regarding the “if” direction of part ii), since is
invertible in , we can factorize as follows:

where is block-diagonal
in . As is invertible in by part i), then clearly
from the aforementioned factorization is invertible as
well. To prove the “only if” direction, notice that since, by part
i), is invertible in , we can write the following
factorization:

where , or equiv-
alently

Clearly, from the last factorization, the invertibility of
implies that is invertible in , which in turn implies that

is invertible.
The next result stems from Definition 1 and Proposition 2.
Corollary 3: An NSLPV model is well-posed if and

only if operator is invertible in for all
.

Note that this result is deducible from (3) as noted before.
Thus, an NSLPV model is well-posed if, for each ,
the corresponding system is well-posed, i.e., is
invertible in .

B. Stability

This section tackles the concepts of stability that are essential
to our work.

Definition 4: An NSLPV model is -stable if is
invertible in for all .

Consequently, an -stable NSLPV model constitutes a set
of linear bounded causal mappings from to ,
namely for all .

At this point, we define as the set of operators
that have bounded inverses and are of the

form , where each
is block-diagonal so that .

Observe that is a commutant of . Moreover, we define the
subset of by .

Definition 5: An NSLPV model is strongly -stable if there
exists satisfying

(7)

The following lemma asserts that strongly -stable NSLPV
models constitute a subset of the -stable ones.

Lemma 6: A strongly -stable NSLPV model is also
-stable; however, the converse is not true in general.
The proof parallels the standard case and is hence omitted.
Remark 7: We know that, under -stability, the norm

is bounded for all . However, this
boundedness is not necessarily uniform. On the other hand,
strong -stability guarantees that this norm is uniformly
bounded; this is clearly shown by the following norm condition
which is easily derived from (7):

for all

where is any solution in to inequality (7).
One of the key features of strongly -stable NSLPV models

is that they can always be represented by an equivalent balanced
realization, as we will show next. But first, we need to define the
balanced realizations of an NSLPV model.

Definition 8: An NSLPV system realization is balanced if
there exists a diagonal operator satisfying

(8)

(9)

Lemma 9: An NSLPV model can be equivalently represented
by a balanced realization if and only if it is strongly -stable.

Proof: Consider a strongly -stable NSLPV model
. This is equivalent to the existence of

satisfying (7), which in turn is equivalent to the existence
of operators solving the generalized Lyapunov
inequalities

Clearly, these two conditions are themselves equivalent. Now
we define the operator by

where unitary operator and diagonal operator
are obtained by performing a singular value decomposition

on , namely . Then, the fol-
lowing holds:

As a result, the equivalent realization

is obviously balanced.
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IV. MODEL REDUCTION OF STRONGLY -STABLE

NSLPV SYSTEMS

This section focuses on the balanced truncation model re-
duction of strongly -stable NSLPV systems. It is divided into
three subsections: The first presents a precise formulation of the
balanced truncation problem; the second gives upper bounds on
the error induced in such a reduction process; and the last deals
with eventually periodic LPV systems and delivers guaranteed
finite error bounds for the balanced truncation of such systems.

A. Balanced Truncation

Consider a strongly -stable NSLPV system with bal-
anced realization and generalized diagonal
gramian satisfying both of the generalized Lyapunov
inequalities (8) and (9). Recall that ,
where each , and is a
diagonal positive definite matrix in . We assume without
loss of generality that, in each block , the diagonal entries
are ordered with the largest first. Now given the integers
such that for all , we partition each
of the matrices into two sub-blocks and

so that

(10)

where and are block-diagonal operators. Note that, since
is allowed to be equal to zero or at any time ,

it is possible to have one of the matrices or with
zero dimension; this corresponds to the case where either zero
states or all states are truncated at a particular . Allowing for
matrices with no entries, although a slight abuse of notation, will
be very helpful in the manipulations of the sequel. We define the
operators and to have a similar structure to that of , namely

and . The
singular values corresponding to the states and parameters that
will be truncated are in .

At this point, we want to partition , and conformably
with the partitioning of . Recall from Section III that ,
and have the following forms:

...
...

. . .
...

...

where each of the elements of these partitioned system operators
is block-diagonal. Note further that

...
...

. . .
...

(11)

Let us now focus on the matrices and
partition them in accordance with the partitioning of

and
so that

where , and
. Hence, we have

where each of the elements is block-diagonal. Similarly, the
other elements of the system matrices in (11) are partitioned
compatibly with the partitioning of the associated so that

...
...

. . .
...

Then, a state–space realization for the balanced truncation
of the system is , where

and

...
...

. . .
...

...

with being an appropriately defined truncation operator.
Namely, we have ,
where . Notice that
is constructed from the same parameters as those in .

Lemma 10: Suppose is a balanced realiza-
tion of . Then the realization of the balanced truncation
is also strongly -stable and balanced.

Proof: To start, there exists a unique permutation such
that formally; then we have

and , where
is a realization of the balanced truncation , and the rest

of the operators are defined in the obvious way.
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As the generalized gramian satisfies both of inequalities (8)
and (9), then focusing on (8), and with the aforesaid permutation
in mind, the following ensues:

This clearly gives . Similarly,
starting with (9), we can show that

Thus, directly from the definitions of strong stability and a bal-
anced system, we have the desired conclusion.

B. Error Bounds

This subsection gives upper bounds on the error induced in
the balanced truncation model reduction process. We start with
the following result.

Lemma 11: An NSLPV model is strongly -stable and
satisfies the condition for all if there exists a
positive definite operator in the commutant of such that

(12)

This is a generalization of the sufficiency part of the Kalman–
Yakubovich–Popov (KYP) Lemma. Its proof is routine and so
we do not include it here. Note that inequality (12) is necessary
and sufficient in the purely time-varying case as proved in [15];
however, in our case, it is in general only sufficient.

Theorem 12: Suppose that is a balanced
realization for the NSLPV system , and that the diagonal
generalized gramian , satisfying both of inequalities
(8) and (9), is partitioned as in (10). If for all

, then the balanced truncation of satisfies the
norm condition

Proof: As and are both strongly -stable, then so
is . One realization of

is given in linear fractional form by

where , and are as defined in the proof of Lemma 10,
and where for all . In the sequel,
we will construct a positive definite operator that commutes
with for all and satisfies inequality (12)
for this realization. Then, invoking Lemma 11 completes the
proof.

Given that the diagonal operator satisfies inequalities
(8) and (9), then direct applications of the Schur complement

formula, along with some permutations, guarantee the validity
of the following condition:

where ,

and . Define invertible operators and by

Pre- and postmultiplying the previous condition by
and , respectively, give the equivalent inequality

(13)

where . Performing the multiplications in
this inequality leads to

and
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Note that, in the preceding expressions, some of the operators
might contain at certain time-instants matrices of zero dimen-
sions. In such scenarios, the rows and columns of which the
said matrices are elements would not be present, and the cor-
responding operator inequalities remain valid.

Define the operator as

Observe that, since , then . Also, clearly
commutes with the operator . Recall that, by as-
sumption, ; hence, and

. With this in mind, it is not difficult to see that inequality
(13) implies that

Then, invoking Lemma 11, we get for
all .

Theorem 13: Given a strongly -stable NSLPV model ,
then its balanced truncation satisfies

for all

where are the distinct diagonal entries of the block-diagonal
operator .

The proof follows from scaling, Lemma 10, and repeated ap-
plication of the previous theorem. Note that this error bound
might involve an infinite summation which in general may not
converge to a finite number. In the following, we improve on
this result and derive tighter bounds. We will first consider bal-
anced systems where the singular values corresponding to the
states and parameters to be truncated are monotonic in time. Be-
fore doing this, it will be convenient to establish the following
terminology.

Definition 14: Given a scalar sequence defined on a subset
of the nonnegative integers, we define the following hold rule

which extends the domain of to all :
Let and then set

if
where if .

We now have the following result.
Theorem 15 (Monotonic Case): Suppose that

is a balanced realization for the NSLPV
system , and that the diagonal generalized gramian ,
satisfying both of inequalities (8) and (9), is partitioned
as in (10). Also, suppose that, for all
and , we have

, where and the
sequence of scalars for all is monotonic. Then, the
balanced truncation of satisfies the norm condition

Proof: It is sufficient to prove the theorem for the case
where only one parameter or state block is being truncated (i.e.,

for all except for one, say ), since
the general case then follows simply by the standard use of
the telescoping series and triangle inequality. Also, we assume
without loss of generality that for all ; this can
always be achieved by scaling inequalities (8) and (9).

To begin, we extend the domain of definition of to all
using the hold rule defined in Definition 14; note that

the extended sequence is still monotonic. We now split the re-
mainder of our proof into two separate cases, one where this se-
quence is nondecreasing and the other where it is nonincreasing.
Case nondecreasing:

In this case, we have for all . We define
the state space transformation as

(14)

Note that, since , then is indeed bounded. This gives
the following balanced realization for

(15)

For convenient reference, we will use to refer to the system
when the realization in use is (15).

Our goal now is to show that this new realization is balanced.
To this end, given the state transformation , we use (8) and (9)
to get

(16)

where . Because of the special structure of and
the fact that , it is not difficult to see that

Then, pre- and post-multiplying inequality (16) by and
respectively and then using the above inequalities give

Hence, is a diagonal gramian satisfying the generalized Lya-
punov inequalities for the system realization . Notice that, by
the definition of , we have

Thus, , and so, by invoking Theorem 12, we deduce
that the balanced truncation of the system satisfies the
norm condition
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Now, because of the special structure of , it is not difficult to
see that, for each , the error system realizations
and are in fact equivalent, and as a result, we have

Case nonincreasing:
A similar argument applies where here the state transforma-

tion is defined as .
We now consider the more general case, where singular

values need not be monotonic in time. But first, we require the
following definition from [5].

Definition 16: Given a vector for some
integer , suppose that cannot be considered as a local
maximum and cannot be considered as a local minimum.
Then vector has local maxima and local minima

for some integer , and the max-min ratio of ,
denoted , is defined as

Theorem 17 (Nonmonotonic Case): Given a balanced real-
ization for the NSLPV system , suppose
that a diagonal operator satisfies both of inequalities
(8) and (9) and is partitioned as in (10), where, for all

, with .
Define the vector to consist of the elements for all time

such that is nonzero. If for each we have
, then the balanced truncation of satisfies

the norm condition

The proof that follows uses the same idea as that of Theorem
15. Basically, we need to define some state space transformation
that results in a balanced realization for the system where the
diagonal gramian solving the Lyapunov inequalities for this
realization is such that . Then, invoking Theorem 12
completes the proof. The choice of the state space transforma-
tion used is inspired by that of the monotonic case.

Proof: As with the proof of Theorem 15 it is sufficient to
prove the result for the case where the only that has non-zero
dimension is for some fixed in ; without loss
of generality we assume that for all .

To keep the notation simple, we suppress the subscript in
and . The vector is of the form

corresponding to values of the sequence evaluated at the or-
dered time points

The denoted local minima and maxima of the vector are as
defined in Definition 16. We now use the hold rule of Definition

14 to extend the sequence to all ; the maxima and
minima of are illustrated as follows:

We define the state–space transformation as

for

for

for

for
...

...
for

for

where . Also, define operators

such that and . It is not difficult
to see that the constituent scalars of operator define a nonin-
creasing sequence, and so do those of operator and those of
operator . Then, given the equivalent realization

of the system , which we denote for ease of reference by ,
and because of the special structure of and the assumption
that , the following ensue:

where . Notice that
and . Thus, the diagonal operator satisfies the gen-
eralized Lyapunov inequalities (8) and (9) for the realization

. As , then, invoking Theorem
12, we get

for all

Finally, the special structure of operator and the fact that
lead to

for all

We remark that Theorem 13 generalizes the LTV result in [4]
to the NSLPV framework. Also, Theorems 15 and 17 are mainly
generalizations of their LTV counterparts in [5], with the im-
portant exception that the truncations in the theorems need not
be restricted to connected intervals. To illustrate how to apply
these results, we consider the following hypothetical example.
Suppose we are to truncate the states corresponding to the se-
quence for , where
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Then the corresponding error bound obtained from Theorem 13
is

This is exactly the same bound that the main result of [4] would
give assuming a standard LTV system. If we are to apply The-
orem 17 to truncate the states in one step, then we obtain the
error bound

This bound is quite conservative and can be significantly
improved if we truncate the states in three steps and ac-
cordingly divide the sequence into the following:

, and . Then, applying
Theorem 17 recursively, we obtain the improved error bound

This can also be obtained from the results of [5] if the system
in question is a standard LTV system. But, in our case, we
can actually further improve on the last bound by dividing the
sequence into the two monotonic sequences
and and then applying Theorem 15
twice to get the error bound .

Finally, it worth noting that we can generalize the LTV error
bound result of [16] to the NSLPV framework, but we will re-
frain from doing so here due to space considerations. This re-
sult is very useful when truncating lots of states over small time
intervals.

C. Eventually Periodic LPV Systems

This subsection focuses on the balanced truncation of even-
tually periodic LPV systems. These systems are aperiodic for
an initial amount of time, and then become periodic afterwards.
One scenario in which they originate is when parameterizing
nonlinear systems about eventually periodic trajectories. Such
trajectories can be arbitrary for a finite amount of time, but then
settledownintoaperiodicorbit; a special caseof thisoccurswhen
a system transitions between two operating points. In addition
to that, eventually periodic systems naturally arise when con-
sidering problems involving plants with uncertain initial states.
Note that both finite horizon and periodic systems are subclasses
of eventually periodic systems. We refer the reader to [17]–[19]
for some useful results on eventually periodic models. We now
give a precise definition of an eventually periodic operator.

Definition 18: A block-diagonal mapping on is -
eventually periodic if, for some integers , we have

that is is -periodic after an initial transient behavior up to
time . Moreover, a partitioned operator, whose elements are
block-diagonal, is -eventually periodic if each of its block-
diagonal elements is -eventually periodic.

Theorem 19: Suppose that state space operators , and
are -eventually periodic. Then solutions sat-
isfying Lyapunov inequalities (8) and (9) exist if and only if

Fig. 2. Translational system.

-eventually periodic solutions exist.
The outline of the proof is as follows: first, employ a similar av-
eraging technique to that used in [14] to show that the periodic
part of any of the generalized Lyapunov inequalities admits a
-periodic solution if feasible, then, having established that, the

above result follows from scaling.
Thus, if the system is strongly -stable and -eventually

periodic, then we can construct an -eventually periodic
balanced realization with an -eventually periodic diagonal
gramian satisfying Lyapunov inequalities (8) and (9).

Theorem 20: Suppose that system is an -eventually
periodic system with a balanced realization .
Then the following hold.

i) There exists an -eventually periodic diagonal oper-
ator , partitioned as in (10), satisfying both of the
generalized Lyapunov inequalities (8) and (9);

ii) The balanced truncation of is balanced and satis-
fies the finite error bound

for all ,where are the distinct diagonal entries
of the matrix , and is
the finite upper bound on the error induced in the balanced
truncation of the finite horizon part of and is derived
by applying Theorem 17.

Remark 21: Given an eventually periodic system, suppose
that we are to truncate states or parameters over the whole period
and that the relevant singular values are mostly distinct. Then
clearly, the larger the period length is, the less useful the error
bounds become since computing these bounds involves summa-
tions over the period. In this case, it might be more plausible to
solve for controllability and observability gramians which are
constant over the period; this would ensure that the singular
values are equal over the period and hence eliminate the need for
large summations when computing the associated error bounds.

V. EXAMPLE

Consider the two-mass translational system in Fig. 2. The
state variables and denote the positions of masses and

, respectively. The masses are time-varying and are assumed
to move horizontally on frictionless bearings. The springs are
undeflected when . The control input is the hori-
zontal force applied to mass . Suppose that the spring con-
stants , and the friction coefficients

. We assume that the masses ex-
hibit eventually time-invariant variation, namely each starting
at an initial value of 50 and then decreasing linearly with time
to a final permanent value of 25 after . Suppose that the
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measurable output is only position , then the continuous-time
state–space realization of this system is given by

(17)

where the state
, and

We now derive an NSLPV model that captures the nonlinear
dynamics of this translational system. To begin, one obvious
choice for parametrization of the above system equations is

. The next step is to formulate the state–space equa-
tion (17) in an LFT framework, namely

In other words, we need to write the matrix-valued functions
and as

(18)

Since only has explicit dependence on time , then clearly
has to be zero and . Also, as has

polynomial dependence on the parameters, the corresponding
LFT formulation is straightforward, and uses mainly the
following:

...
. . .

...
...

...

Then, setting

it is not difficult to see that

We now discretize the continuous-time LFT model. In order
to simplify this discretization, we choose a sufficiently small
sampling period , namely , so that it is reasonable
to assume that, for all discrete time-instants , the sched-
uled parameters vary very slowly in the time interval

that their values on this interval can be approx-
imated by for . Then, we can use
zero-order hold sampling to obtain the following discrete-time
state–space equation:

where we have
, being the state transition matrix as-

sociated with the -matrix , and

Alternatively, as proposed in [20], we can use a bilinear trans-
formation to obtain a discrete-time trapezoidal approximation
of the continuous-time LFT plant.

At this point, we assume that the parameters are such
that . Then, this bound is absorbed into the
plant so that the new scaled parameters satisfy , where

for . Also, due to this scaling, we get
. As a re-

sult, we obtain the following discrete-time (100, 1)-eventually
periodic LPV model:

(19)

where , and are zero matrices.
This system is strongly -stable since the corresponding

Lyapunov strict inequalities admit positive definite solutions.
Since the error bound is clearly dependent on these solutions,
we need to make sure that such solutions satisfy some criterion
that yields reasonable error bounds, for example, selecting
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the solution with the minimum trace. Hence, we solve the
following semidefinite programming optimization problem:

subject to:

for all and

with

Let and be
the Cholesky factorizations of the generalized gramians for
all and . Then, performing
a singular value decomposition on , namely

, we compute the balancing
state transformation matrix and its inverse as

and consequently obtain the balanced realization ,
where

and

for , with .
All computations are carried out in Matlab 7.0. We use

SeDuMi [21], along with the interface [22], to solve the var-
ious semidefinite programming optimization problems in this
example. As for tuning the solver parameters, we set the preci-
sion level equal to , and, since SeDuMi regards all LMI
constraints as nonstrict inequalities, we add, when necessary,
sufficiently small constant positive definite terms to the LMIs
to ensure strict inequalities and, more importantly, positive
definite gramians.

The singular values comprising the generalized diagonal
gramian are plotted in Fig. 3. Notice that, at each time instant

, the singular values corresponding to the four copies of
parameter cannot be distinguished on the plot, and are in fact
numerically almost identical. We will exploit this situation and
set the four singular values at each point in time equal to their
maximum, which is the one corresponding to the first copy of

. The same can be said about the singular values associated
with the parameter . Now, it is not difficult to see from the
Lyapunov inequalities that the norm of the -operator of a bal-
anced NSLPV realization is always less than one; specifically,
in this example, we have . Then, to ensure the strict
feasibility of the Lyapunov inequalities, we make use of the
fact that and add to the modified gramian, which we
denote by , a sufficiently small positive definite term so

Fig. 3. � (k) = diag(� (k); � (k); � (k); � (k)) for i = 0; 1; 2.

that the positive definite diagonal operator satisfies the
strict Lyapunov inequalities. The value for that we use here is

, and the operator is the gramian used when
computing the error bounds. As a result, if we are to truncate
the four copies of parameter or , then we only need to
account for the singular values corresponding to the first copy
when calculating the error bound.

Given the setup of this problem, it is clear that we can
truncate both parameters as well as two of the states of the
balanced system over all time instants without inducing any
significant error. The question is whether this can be reflected
in the corresponding error bound given by the results of Sec-
tion IV-B. It is obvious from the discussion at the end of
Section IV-B that the aforesaid results generally give different
bounds depending on how the theorems are applied. This is
not an issue in the case of systems with small finite horizons
since, in such cases, simple algorithms can be written to get
the tightest bounds possible. However, calculating useful error
bounds can become quite challenging when dealing with large
finite horizons. This evokes a very interesting research problem
which is worth looking into in future work, namely developing a
fast computational algorithm that effectively applies the results
of Section IV-B to calculate useful bounds. For this example,
we will simply consider each parameter and each state to be
truncated one at a time, then implement the truncation over the
finite horizon in one step, and apply Theorem 17 to compute
the error bound. As for the truncation over the time-invariant
part, the corresponding error bound is given by the now stan-
dard “twice the sum of the tail” formula. Note that, since we
assume zero initial conditions, we can truncate the states and
parameters at without inducing any error and, hence, we
need not account for the singular values corresponding to time

when computing the error bound.
With this said, truncating the four copies of parameter , the

four copies of parameter , and the fourth and third states of the
balanced system over all time instants results in the error bounds

, and , respectively.
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Thus, the overall bound on the error induced in such a truncation
is

Note that the gramians and hence the error bounds depend on
the solver used. For instance, if we are to use the solver mincx,
given in the Robust Control Toolbox, with default settings, then
the corresponding error bound would be , roughly
24 times the bound given by SeDuMi. In addition to this disad-
vantage, it is worth noting that, even if we prevent switching
to QR factorization, mincx remains very slow compared to Se-
DuMi especially when it comes to large finite horizons.

At this point, we would like to see if actually constitutes a
good upper bound on the worst case error for such a reduction.
For that matter, we first need to compute the worst case error,
which is defined as . It is not necessary to de-
termine the exact value of this supremum; rather, it is sufficient
to find good lower and upper bounds on this value, from which
we can deduce an estimate. To begin, an upper bound on this
supremum can be provided by an algorithm based on the KYP
lemma, namely , where is the
solution of the following convex optimization problem:

minimize:

subject to:

for all with

Note that is a realization for the error
system , where in this case is given by

, and the (100, 1)-eventually
periodic operators are obtained from the balanced
system operators as follows:

with

To see if this upper bound is overly conservative, we can cal-
culate the -induced norm of the LTV system for
some particular value of ; this constitutes a lower bound on
the supremum. For instance, in this example, we find that

where the lower bound corresponds to . It might be
possible to improve on the upper bound given by the optimiza-
tion problem if we allow for eventually periodic solutions of the
KYP inequality with larger finite horizons, as discussed in [1].
Also, to calculate the -induced norm of the eventually periodic
LTV system, we use the version of the KYP lemma for such sys-
tems (see [17]–[19]). Bearing in mind the simple approach we

use to compute the error bound , we find that this bound is of
the same order of magnitude as the worst case error.

Error bounds are usually used as a guideline for model re-
duction; namely, a truncation is justified if the associated error
bound, say , is insignificant relative to the norm of for all

, i.e., . However, computing this infimum or
at least a good lower bound on its value does not appear to be
easily achievable with current results. We will just touch upon
this problem here and hopefully investigate it further in future
work. To start, note that solving can be equivalently
reformulated as a synthesis control problem of finding a con-
troller for the eventually periodic LTV system ,
which would minimize the -induced norm of the closed-loop
system. Since, in this case, the direct feedthrough term, i.e., the
“ ” operator, is and hence nonzero, then the results of
[17]–[19] cannot be applied directly; however this can be reme-
died easily by setting . The results of
the preceding references minimize the closed-loop norm over
dynamic controllers, and hence the solution will most likely be
an overly conservative lower bound on the infimum. This bound
could be improved if we restrict the search to controllers that are
static but unbounded to avoid an NP-hard problem [23]. Then
again, this is a problem in itself, and a good starting point would
be to generalize and maybe improve on the methods of [24],
[25] among others to devise a procedure for minimizing the
closed-loop norm over static controllers. It is worth noting that a
special case of this problem is solved in [26], where
the LFT considered is an interconnection between a continuous
linear time-invariant system and a diagonal matrix of design pa-
rameters. Of course, if the state space operator of system
is nonzero and invertible, then one lower bound would be

where satisfies the condition and is pro-
vided by applying the KYP lemma as discussed previously; this
holds assuming that is strongly -stable. As far as this ex-
ample is concerned, we have

, where the lower bound corresponds to ;
then, since we have set up the problem so that the reduction of
the parameters results in a negligible error, it is reasonable to
assume that the value of is close to 0.05.

Remark 22: If we only have one parameter , then, since
the minimality theory for transfer functions in a single com-
plex variable is identical to that for rational functions in a single
real variable, it might be possible to reduce the model dimen-
sions pointwise in time at no cost. Specifically, appealing to the
state–space equations (19), we have

and so, at each time instant , we can reduce the dimensions
of the model by eliminating any uncontrollable or unobserv-
able states of the real-variable “transfer function” , and
hence obtaining the minimal realization of .

Remark 23: Note that, in this example, we started with a
continuous-time model, but then we had to discretize this model
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so as to be able to apply the results of this work. An inter-
esting problem is to examine whether similar framework and
results can be developed for continuous-time NSLPV systems.
In fact, in [5], this balanced truncation problem is studied in
continuous and discrete-time for purely time-varying systems,
and the procedure and results are shown to be very similar for
both cases. However, extra care is needed in the continuous case;
namely, in continuous-time, we require regularity conditions on
the system realization to ensure the existence of a well-behaved
balancing transformation. Finding this transformation is also a
much more involved computational task than it is in the dis-
crete-time case. In [27], the balanced truncation procedure is ap-
plied to a linear time-varying approximation of a diesel exhaust
catalyst model, where both continuous-time and discrete-time
approaches are considered. The reduced-order model, in both
cases, is obtained using certain projections rather than direct
balancing. In this case study, it is shown that, while both ap-
proaches give good approximations with comparable worst-case
errors, the discrete-time approach is simpler to implement and
requires fewer computations.

VI. COPRIME FACTORS REDUCTION FOR UNSTABLE

NSLPV MODELS

This section extends the applicability of the model reduc-
tion results in Section IV to the class of strongly stabilizable
and detectable NSLPV models. In fact, by generalizing the co-
prime factors reduction methods given in [6]–[8], we can still
utilize the balanced truncation technique of Section IV to sys-
tematically reduce strongly stabilizable and detectable NSLPV
models, and further maintain some means of evaluating the error
resulting from the reduction process.

A. Strongly Stabilizable and Detectable NSLPV Models

This subsection defines and further provides tools to identify
strongly stabilizable and detectable NSLPV models. Note that
the results here are generalizations of their counterpart matrix
results given in [2]. To start, we define the set to consist of
all the operators having the form

, where each
is block-diagonal.

Definition 24: An NSLPV model is strongly stabilizable by
a feedback operator if: i) it is well-posed and ii) the
resulting closed-loop NSLPV realization is strongly -stable,
i.e., there exists such that

(20)

Similarly, an NSLPV model is strongly detectable if it is well-
posed and if there exist and a bounded operator , of
appropriate dimensions and similar structure to that of , such
that

(21)

To prove the next proposition, we require the following result
from [14], which is based on the matrix version in [28].

Lemma 25: Given partitioned bounded operators , and
, each of whose elements is a block-diagonal operator, with

being self-adjoint, then there exists a partitioned bounded
operator of compatible block-diagonal elements satisfying

if and only if

and (22)

where , and
.

Proposition 26: The following are equivalent.
i) There exist such that

ii) There exists such that .
Proof: For notational simplicity, we assume in this proof

that the matrices are rank-deficient for all ; the proof
for the general setting follows immediately. Also, we assume
without loss of generality that

for all , since otherwise there are redundancies in the
controls which can be easily removed. Given these assumptions,
we can always find an operator of the same structure as
such that , and has a bounded
inverse.

Applying the Schur complement formula to the inequality in
i), we get the equivalent inequality

which can be equivalently written as

Setting ,

it is obvious from Lemma 25 that i) is equivalent to (22),
where and . The condi-
tion is trivial. Performing the multiplication

and then applying the Schur complement formula to
the resulting inequality lead to

(23)

Last, the existence of a solution in to (23) is indeed equivalent
to ii); this follows from an immediate generalization of Finsler’s
Lemma along with scaling.

Theorem 27: An NSLPV model is strongly stabilizable by a
feedback operator if and only if there exists such
that

(24)

Furthermore, , if well-
defined, is one such stabilizing operator.

Proof: This result follows from Definition 24 and Propo-
sition 26. We only need to show that the above specific choice
of operator works. To start, since , then assuming that

is invertible in ensures that this particular value
of is well-defined; this assumption can always be achieved
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by removing any redundancies in the controls and slightly per-
turbing if necessary. Applying the Schur complement for-
mula twice to inequality (24), we get the equivalent inequality

. An immediate general-
ization of the matrix inverse lemma gives the following:

Then it is not difficult to see from the preceding that

which can be equivalently written as

where . Then ap-
plying the Schur complement formula twice to the last
inequality, we get inequality (20).

Corollary 28: An NSLPV model is strongly detectable if and
only if there exists such that .
The proof of this result parallels that of Theorem 27.

B. Right-Coprime Factorization

In this subsection, we define a notion of right-coprime factor-
ization for NSLPV systems. Also, we show that a strongly sta-
bilizable and detectable NSLPV system always has a right-co-
prime factorization.

Definition 29: Two operators and in are right-
coprime if there exist in such that

(25)

Moreover, two -stable NSLPV systems and are right-
coprime if and are right-coprime for all .

Definition 30: Given an NSLPV system , then the -stable
NSLPV system pair is a right-coprime factorization
of if, for all , we have

a) is invertible in ;
b) and are right-coprime;
c) .
Proposition 31: Given a strongly stabilizable and detectable

NSLPV model with a stabilizing feedback operator ,
then the strongly -stable NSLPV system pair

(26)

is a right-coprime factorization for .
Proof: In the following, fix to be some element in . To

start, it is clear from (26) that and are in . Refer-
ring to Definition 30, we first need to show that is invertible
in , and for that matter, consider

As is well-posed, then so is . Also, it can be easily verified
that , i.e., . Hence, the inverse
of exists and is well-defined on . To prove ,
first notice that

where , and are defined in the obvious way. Applying
a state space transformation to the previous realization of the
system , we get

where

and . The result is an exactly re-
ducible LFT realization which can be equivalently reduced to
the realization of , namely

Last, we show that and are right-coprime. Since is
strongly detectable, then, by Definition 24, there exists a bounded
operator such that is a strongly stable operator. Then,
following a similar argument as before, it is not difficult to verify
that and , defined later, satisfy condition (25)

C. Coprime Factors Reduction

This subsection presents a systematic approach for the model
reduction of strongly stabilizable and detectable NSLPV sys-
tems. This approach is a generalization of the coprime factors re-
duction method first proposed by Meyer in [8] for standard state-
space systems, and later generalized to the class of stationary
LPV and uncertain systems in [6], [7]. The error measure here,
while still norm-based, does not directly capture the mismatch
between the nominal system and the reduced-order model, as is
the case in Section IV where strongly -stable models are con-
sidered. Instead, the measure we use in this case is related to the
closed-loop stability of these two systems. Hence, given a nom-
inal NSLPV plant and a corresponding right-coprime factor-
ization , defined as in (26), we construct the strongly

-stable NSLPV model

(27)
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Using model reduction for strongly -stable systems, as dis-
cussed in Section IV, we find an approximation using the error
measure

We can then directly relate the factorization to a
lower order NSLPV system , namely .

The following is an outline of the coprime factors reduc-
tion algorithm for a strongly stabilizable and detectable NSLPV
model:

1) Find satisfying inequality (24), then set
; this choice of a stabi-

lizing feedback operator for can always be achieved by
removing any redundancies in the controls, so that
has full-column rank for all , and by slightly per-
turbing if necessary to ensure boundedness.

2) Construct a right-coprime factorization for , for in-
stance the one given in (26), and a corresponding strongly

-stable NSLPV model , defined as in (27).
3) Find satisfying the generalized Lyapunov in-

equalities for , namely

(28)

(29)

We usually require to satisfy some criterion that
yields reasonable error bounds, for example, selecting
the solution with the minimum trace. Note that (or )
might also have to satisfy an additional condition to ensure
the well-posedness of the reduced model , as we will
discuss later in this subsection.

4) Use and to construct a balancing transformation
and a diagonal gramian , as outlined for the ex-

ample in Section V, where satisfies the Lyapunov in-
equalities for the following balanced system realization of

5) Invoke Theorems 13, 15, and 17 to compute error bounds
from the gramian , which would serve as a guideline
for the balanced truncation. Say, one convenient reduced
model is with reduced dimensions , where we have

for all and . De-
fine the truncation operator ,
where each is a block-diagonal operator composed of
matrices . Then, the
truncated system is given by

where .
6) Set

, and . Then, the strongly

-stable balanced truncation provides the right-co-
prime NSLPV systems

Assuming that is invertible in for all
, then the system pair constitutes a

right-coprime factorization for the reduced NSLPV model
, which is given by

Note that, in this case, is a stabilizing feedback operator
for .

We now briefly comment on the previous algorithm. For sim-
plicity, given , we define the nota-
tion . The reduced NSLPV model

may not be well-posed in general, and hence the assump-
tion in step 6), which is equivalent to saying that
is invertible in for all ,
where and . The
well-posedness of the approximation can be guaranteed
if the gramian satisfying (28) further satisfies the condition

. This can be easily shown as follows:
recalling from step 4) that , where is partitioned
as in (10), then it follows that , which
in turn implies that is invertible in for all

. Alternatively, we can impose a similar condition on the
observability gramian to ensure well-posedness.

Next, we give two results pertaining to eventually periodic
models.

Theorem 32: Suppose that and are -eventually pe-
riodic. Then there exists an operator solving inequality
(24) if and only if there exists an -eventually periodic so-
lution .
The proof is similar to that of Theorem 19. The next result stems
from Theorems 27 and 32.

Corollary 33: Given a strongly stabilizable -eventually
periodic LPV model, then one -eventually periodic stabi-
lizing feedback operator is given by

(30)

where is an -eventually periodic operator in sat-
isfying inequality (24).

Thus, in the case of eventually periodic LPV plants, all
the NSLPV models encountered in the preceding model reduc-
tion algorithm can be chosen to be -eventually periodic.

Remark 34: The error bounds we get here are given in terms
of the distance between the coprime factors realizations, and
thus have an interpretation in terms of robust feedback stability.
Connections can also be made to the graph or gap metric set-
tings with connotations for control design robustness analysis,
or more generally for robustness of interconnections; however,
the mathematical details are still lacking. These robustness im-
plications are briefly addressed for the stationary LPV case in
[7, Sec. 4]. Also, as stated for the stationary case in [7], while
the coprime factors are usually normalized in the standard state-
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space case to ensure the least conservative robustness condi-
tions, constructing normalized coprime factors in our case is cer-
tainly a formidable task due to the spatial structure limitations.
Instead, contractive and expansive coprime factors realizations
may be considered; see [7] and [29] for more on this.

VII. CONCLUSION

In this paper, we have introduced balanced truncation model
reduction for NSLPV systems, derived explicit error bounds
for this procedure, and applied these results to an eventually
periodic translational system. Even when restricted to purely
time-varying systems, the results obtained provide the least con-
servative bounds currently available in the literature. Although
there has been considerable recent achievement in the literature
on model reduction of nonstationary systems, which are all di-
rectly motivated by the original LTI results in [12], [13], we
conjecture that significantly better bounds may be obtainable.
Furthermore, we have extended the coprime factors reduction
approach to the class of NSLPV systems. The motivation for
this work is that NSLPV models used to represent even low-di-
mensional nonlinear systems around trajectories can be of very
high order. The results of this paper can be used to predictably
reduce such models to manageable complexity levels in various
design scenarios, including distributed or networked situations
where the topological structure is to be preserved.
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