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On the Balanced Truncation of LTV Systems

Mazen Farhood and Geir E. Dullerud

Abstract—This note furthers results on the balanced truncation of stable
linear time-varying discrete-time systems. The main result contributes
better error bounds than the currently available ones in certain model
reduction scenarios; this is demonstrated in an example of a four-mass
translational system. Also, this note gives new finite error bounds for the
balanced truncation of stable eventually periodic models.

Index Terms—Balanced truncation, model reduction, time-varying sys-
tems.

I. INTRODUCTION

This note provides new error bounds for the balanced truncation
model reduction of stable linear time-varying (LTV) discrete-time sys-
tems. The main theorem complements recent results on the model re-
duction of LTV systems, notably those of [1], [2], providing tighter
error bounds in certain scenarios. Also, this note gives new finite error
bounds for the balanced truncation of stable eventually periodic sys-
tems; such systems are aperiodic for an initial amount of time.

Our treatment of balanced truncationmodel reduction follows that of
[1], where the notion of balanced realization is defined in terms of gen-
eralized gramians, which are solutions of strict Lyapunov inequalities.
The approach here, like in [1], utilizes the operator theoretic frame-
work developed in [3] for analysis of LTV systems. Given a stable dis-
crete-time LTV systemG with time-varying state dimension nk where
k is time, we would like to apply the balanced truncation model re-
duction procedure to obtain a reduced-order model Gr of dimension
rk � nk for all k in some time interval T , such that the error measure,
defined in terms of the `2-induced norm kG�Grk, is smaller than
some chosen threshold. For that matter, it is very useful to have explicit
error bounds, given in terms of the singular values of the generalized
gramians, that would serve as a guideline for obtaining a reducedmodel
that properly represents the original system. The first such error bounds
are given in [1] and [4], but they can be quite conservative unless the
singular values of the gramians are equal over time. These bounds are
significantly improved in [2], specifically in cases where the singular
values vary monotonically over time, or if nonmonotonically, then rel-
atively slowly; in the event of rapid variations, unnecessarily conserva-
tive bounds may be avoided by splitting the time interval over which
the truncation is implemented into a number, say m, of intervals, and
then truncating the states inm steps. Concerning the result of this note,
if we are to truncate the last nk � rk states over some time intervals,
then we only need to account for the singular values corresponding to
the (rk+1)-th state when computing the error bound. Hence, our result
has a clear advantage over those of [1] and [2] when truncating lots of
states, i.e., rk � nk, over small time intervals, where the error bounds
given by [1] and [2] for truncating the last nk � rk + 1 states are rela-
tively significant. The bounds given here can also be quite handy when
truncating eventually periodic systems exhibiting short transient time
variations, as shown in the example at the end of the note.
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II. PRELIMINARIES

The set of real numbers and that of real n�m matrices are denoted
by and n�m, respectively. The maximum singular value of a matrix
X is denoted by ��(X).
Given two Hilbert spacesE and F , we denote the space of bounded

linear operators mappingE toF byL(E; F ), and shorten this toL(E)
when E equals F . If X is in L(E;F ), we denote the E to F induced
norm of X by kXkE!F ; when the spaces involved are obvious, we
write simply kXk. The adjoint ofX is writtenX�. When an operator
X 2 L(E) is self-adjoint, we useX � 0 tomean it is negative definite;
that is there exists a number � > 0 such that, for all nonzero x 2
E, the inequality hx;Xxi < ��kxk2 holds, where h�; �i denotes the
inner product and k�k denotes the corresponding norm on E. If Si is
a sequence of operators, then diag(Si) denotes their block-diagonal
augmentation.
The main Hilbert space of interest in this note is denoted by `2(J)

where J is an infinite sequence of Euclidean spaces, namely J =
( n ; n ; n ; . . .). It consists of elements x = (x0; x1; x2; . . .),
with each xk 2 n , which have a finite two-norm kxk defined by
kxk2 = 1

k=0
kxkk

2 < 1. The inner product of x; y in `2(J) is
hence defined as the sum hx; yi = 1

k=0
hxk; yki. If the sequence of

spaces J is clear from the context, then the notation `2(J) is abbrevi-
ated to `2. Given a time-varying dimension nk, we define the notation
In` := diag(In ; In ; In ; . . .), where In is an ni � ni identity ma-
trix.
A key operator used in this note is the unilateral shift Z , defined as

follows:

Z : `2(
n
;

n
; . . .)! `2(

n
;

n
;

n
; . . .)

(a1; a2; . . .)
Z
7�! (0; a1; a2; . . .):

Following the notation and approach in [3], we make the following
definitions. First, we say a bounded linear operator Q mapping
`2(

m ; m ; . . .) to `2(
n ; n ; . . .) is block-diagonal if there

exists a sequence of matrices Qk in n �m such that, for all w; z,
if z = Qw, then zk = Qkwk . Then Q has the representation
diag(Q0;Q1; Q2; . . .). A diagonal operator is a block-diagonal
operator where each of the matrix blocks is diagonal.
Suppose F , G, R, and S are block-diagonal operators, and let A be

a partitioned operator of the form

A =
F G

R S
:

Then, we define the following notation:

[[A ]] :=diag
F0 G0

R0 S0
;
F1 G1

R1 S1
; . . .

which we call the diagonal realization of A. Clearly for any given op-
eratorA of this particular structure, [[A ]] is simplyA with the rows and
columns permuted appropriately so that

[[A ]]
k
=

Fk Gk

Rk Sk
:

From this definition, it is easy to see that [[A+B ]] = [[A ]] + [[B ]]
and [[AC ]] = [[A ]] [[C ]] hold for appropriately dimensioned operators,
and similarly thatA � �I holds if and only if [[A ]] � �I , where � is a
scalar. Namely, the [[ � ]] operation is a homomorphism from partitioned
operators with block-diagonal entries to block-diagonal operators.
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III. LTV SYSTEMS AND BALANCED TRUNCATION

We now review the balanced truncation method of model reduction
for discrete-time LTV state space systems. As our presentation is rather
brief, we refer the reader to [1] for an in-depth treatment of the theory.
To start, consider the following time-varying state space equations:

xk+1 =Akxk +Bkuk; x0 = 0

yk =Ckxk +Dkuk

where Ak 2 n �n , Bk 2 n �n , Ck 2 n �n , and
Dk 2 n �n are bounded real matrix sequences. Clearly, these
sequences define block-diagonal operators A, B, C andD and, there-
fore, the previous system may be written more compactly in operator
form as

x =ZAx + ZBu

y =Cx+Du (1)

where Z is the shift, or delay, operator on `2. Thus, assuming the rele-
vant inverse exists, we can write the map from u to y as

u 7! y = C(I � ZA)�1ZB +D:

We will say that the previous LTV state–space system is stable when
I�ZA has a bounded inverse; this is equivalent to exponential stability
as shown in [1] and [3].

At this point, we define X as the set of positive definite block-diag-
onal operatorsX 2 L(`2) of the formX = diag(X0;X1; . . .), where
Xi 2 n �n . We now give an explicit definition of a balanced real-
ization for LTV systems.

Definition 1: An LTV realization (A;B;C;D) is balanced if there
exists a diagonal operator � 2 X satisfying both of the following
generalized Lyapunov inequalities:

A�A� � Z
��Z +BB

� � 0 (2)

A
�
Z
��ZA � �+ C

�
C � 0: (3)

Thus, operator � is of the form � = diag(�0;�1;�2; . . .),
where each matrix �i is diagonal and belongs to n �n . We assume
throughout without loss of generality that, in each block �i, the diag-
onal entries are ordered with the largest first. Now given the integers ri
such that 0 � ri � ni for all i � 0, we partition each of the �i blocks
into two sub-blocks �i 2 r �r and 
i 2 (n �r )�(n �r ) so that

� =
�



(4)

where � and 
 are block-diagonal operators. The singular values cor-
responding to the states that will be truncated are in 
. Note that if for
some i we have ni = ri, then the dimension of
i is zero and no states
are truncated at the ith point in time.

PartitioningA,B andC conformably with the partitioning of�, we
get

A =
Â11 Â12

Â21 Â22
B =

B̂1

B̂2
C = [[ Ĉ1 Ĉ2 ]] :

Then, the state–space realization for the balanced truncation Gr of
system G is (Â11; B̂1; Ĉ1;D). By [1, Lemma 14], this reduced real-
ization is also stable and balanced. General upper bounds on the error
induced in such a reduction process are given in [1] and [2], with [2,
Th. 2] providing to our knowledge the tightest currently available.

IV. MAIN RESULT

We start this section with the following result from [3].
Lemma 2: Given an LTV system realization (A;B;C;D) and an

integer 
 > 0, then the system is stable and satisfies the norm condition
kC(I � ZA)�1ZB +Dk < 
 if and only if there exists X 2 X
satisfying

A B

C D

�
Z�XZ

1


I

A B

C D
� X

I
� 0: (5)

To best present our result, we will make the assumption that there are a
finite number of matrices 
i with nonzero dimensions; that is, we only
intend at this point to remove states at a finite number of time instants.
With this said, define the finite set F = fk � 1 : rk 6= nkg. Note that
k = 0 is always excluded from the setF because we assume the initial
state x0 = 0, which guarantees a zero error when truncating all states
at time k = 0.

Theorem 3: Suppose that (A;B;C;D) is a balanced realization for
the stable systemG, and that the diagonal generalized gramian� 2 X ,
satisfying both of inequalities (2) and (3), is partitioned as in (4). If
F1;F2; . . . ;Fs are nonempty disjoint sets whose union is F , then the
balanced truncation Gr of G satisfies the following inequality:

kG�Grk <
s

i=1

p
2

jF j

max
j2F

�� (
j) (6)

where jFij denotes the number of elements in Fi.
Note that, in the previous theorem, one can judiciously choose the

sets Fi so as to minimize the right-hand side of inequality (6). The
following proof is inspired by that of [1, Th. 17].

Proof: As G and Gr are both stable, then so is G � Gr . One
realization of system G � Gr is ( �A; �B; �C; 0), where

�A =
Â11 0

0 A
�B =

B̂1

B
�C = [[�Ĉ1 C ]] :

In the following, we will construct a positive–definite, block-diagonal
operator X satisfying inequality (5) for the realization ( �A; �B; �C; 0),
such that 
 is equal to the right-hand side of (6). Then, invoking Lemma
2 completes the proof.
To start, we assume without any loss of generality that

maxi2F ��(
i) = 1, and hence 
 � I ; this can always be achieved
by scaling inequalities (2) and (3). We will prove the claim for the
case s = 1; the general case follows simply by the standard use of
the telescoping series and triangle inequality. Next, we construct the
aforesaid operator X .
Given that the diagonal operator� 2 X satisfies inequalities (2) and

(3), then direct applications of the Schur complement formula guar-
antee the validity of the following condition:

�R1 K�

K �Z�R2Z
� 0

where Ri =

��1 0 0 0 0

0 
�1 0 0 0

0 0 I
q

` 0 0

0 0 0 � 0

0 0 0 0 


K =

0 0 0 Â11 Â12

0 0 0 Â21 Â22

0 0 0 Ĉ1 Ĉ2

Â11 Â12 B̂1 0 0

Â21 Â22 B̂2 0 0
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and q1 = nu, q2 = ny . Define the invertible operators L and P by

L =

0 0 0 Ir` 0

Ir` 0 0 Ir` 0

0 In�r` 0 0 In�r`

0 0 I
n

` 0 0

0 In�r` 0 0 �In�r`

P =

Ir` 0 0 0 0

0 0 0 0 In�r`

0 0 0 In` 0

�Ir` Ir` 0 0 0

0 0 In�r` 0 0

:

Pre- and postmultiplying the previous condition by diag(P �; L) and
diag(P;L�) respectively give the following equivalent inequality:

�P �R1P P �K�L�

LKP �Z�LR2L
�Z

� 0: (7)

Performing the multiplications in this inequality leads to

P �R1P =

��1 + � �� 0 0 0

�� � 0 0 0

0 0 
 0 0

0 0 0 I 0

0 0 0 0 
�1

LR2L
� =

� � 0 0 0

� ��1 + � 0 0 0

0 0 
�1 +
 0 
�1 � 


0 0 0 I 0

0 0 
�1 � 
 0 
�1 + 


LKP =
M N12

N21 �Â22

where N21 = [[�2Â21 Â21 Â22 �B̂2 ]]

M =

Â11 0 0 B̂1

0 Â11 Â12 B̂1

0 Â21 Â22 B̂2

�Ĉ1 Ĉ1 Ĉ2 0

N12 =

Â12

Â12

Â22

0

:

Note that, in the preceding expressions, some of the operators might
contain at certain time-instants matrices of zero dimensions. In such
scenarios, the rows and columns of which the said matrices are ele-
ments would not be present, and the corresponding operator inequal-
ities remain valid. Inequality (7), together with an application of the
Schur complement formula, implies that

M� Z�
��1 + � �� 0

�� � 0

0 0 (
�1 + 
)�1
Z

I

M

�
��1 + � �� 0

�� � 0

0 0 

I

� 0: (8)

By assumption 
 � I , and so I + 
2 � 2I . Now 
�1 +

�1

=


1=2 I + 
2 �1

1=2, and it therefore follows that 
�1 + 


�1 �
(1=2)
.

Setting W =
��1 + � ��
�� �

, the following stems from the last

inequality and (8):

M� Z�
W 0

0 1
2



Z

I
M�

W 0

0 

I

� 0: (9)

Let ti,Ni, andm be the positive integers satisfying ti+1 > ti +Ni

for all i = 1; 2; . . . ;m such that

F1 = [mi=1fti; ti+1; . . . ; ti+Ni�1g:

Define the infinite sequence (�0; �1; �2; . . .) as

�k =

1; for 0 � k � t1
( 1
2
)k�t ; for t1+1 � k � t1+N1

( 1
2
)N ; for t1+N1+1 � k � t2

( 1
2
)N +k�t ; for t2+1 � k � t2+N2

...
...

( 1
2
)(jF j�N )+k�t ; for tm+1 � k � tm+Nm

( 1
2
)jF j; for k � tm+Nm+1

where jF1j = m
i=1Ni. The following ensues from inequality (9) and

scaling for all k � 0:

M�
k

�k+1Wk+1 0

0 1
2
�k+1
k+1

�k+1I
Mk

�
�k+1Wk 0

0 �k+1
k

�k+1I
� ��I (10)

where � is some positive integer. Note that if we are not truncating any
states at some time instant k, then the corresponding matrix
k will be
of zero dimensions, and so the rows and columns containing this matrix
will not be present in the previous inequality. Now, the sequence �i is
a nonincreasing sequence, and hence (1=2)jF j � �k+1 � �k � 1.
Also, for k 2 F1, we have �k+1 = (1=2)�k . Then, the following
inequality clearly holds:

�k+1Wk 0

0 �k+1
k

�k+1I

�
�kWk 0

0 1
2
�k
k

I
� 0: (11)

Adding inequalities (10) and (11), and since �k+1 � (1=2)jF j, we
obtain

M�
k

�k+1Wk+1 0

0 1
2
�k+1
k+1

1
2

jF j
I

Mk

�
�kWk 0

0 1
2
�k
k

I
� ��I:

Setting X = diag(X0;X1; X2; . . .), where, for all k � 0, Xk =
diag(�kWk; (1=2)�k
k) � 0, then clearly the positive definite oper-
atorX solves inequality (5) for the realization ( �A; �B; �C; 0) of system
G � Gr , with 
 =

p
2
jF j

. Finally, invoking Lemma 2 and recalling
that by assumptionmax �� (
i) = 1, we conclude that systemG�Gr

satisfies the norm condition kG�Grk <
p
2
jF j

maxi2F �� (
i).
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Remark 4: Theorem 3 immediately generalizes to the case of infi-
nite set F ; however, in instances where the summation in (6) diverges,
one cannot conclude an error bound from this result.

In Section VI, we will demonstrate the usefulness of this result
via a complete example. However, for now, to illustrate how to
apply Theorem 3, we consider a hypothetical example where we
are to truncate the states corresponding to the following sequence
f
1;
2;
3;
4;
5g:

5

3

1

;

3:5

1:5

0:25

;

4:5

2:5

0:75

;

3:25

1:25

0:5

;

4:75

3:75

1:75

:

Then, the corresponding error bound derived by applying effectively
[2, Th. 2] is around 40, whereas if we employ Theorem 3, and choose
F = fF1;F2g, whereF1 = f1; 3; 5g andF2 = f2; 4g, then the error
bound would be

p
2
3

(5) +
p
2
2

(3:5) ' 21, which is roughly
half the value of the error bound given by the result from [2].

V. EVENTUALLY PERIODIC SYSTEMS

This section focuses on the balanced truncation of stable eventually
periodic systems [5]–[7]. These systems are aperiodic for an initial
amount of time, and then become periodic afterwards. They contain
both finite horizon and periodic systems as special cases. What follows
is a precise definition of an eventually periodic operator.

Definition 5: An operator P on `2 is (h; q)-eventually periodic if,
for some integers h � 0, q � 1, we have

Z
q((Z�)hPZh) = ((Z�)hPZh)Zq

that is P is q-periodic after an initial transient behavior up to time h.
Theorem 6: Suppose that A, B, and C are (h; q)-eventually peri-

odic. Then there exist X; Y 2 X solving inequalities (2) and (3), re-
spectively, if and only if there exist (h; q)-eventually periodic solutions
Xeper; Yeper 2 X .

This is a special case of [5, Th. 12]. Thus, if the system is stable
(h; q)-eventually periodic, then we can construct an (h; q)-eventually
periodic balanced realization with an (h; q)-eventually periodic diag-
onal gramian � 2 X satisfying both Lyapunov inequalities.

Theorem 7: Suppose that system G is an (h; q)-eventually periodic
system with a balanced realization (A;B;C;D). Then, the following
hold.

i) There exists an (h; q)-eventually periodic diagonal operator
� 2 X , partitioned as in (4), satisfying both of the general-
ized Lyapunov inequalities (2) and (3).

ii) The balanced truncation Gr of G is balanced and satisfies
the finite error bound

kG�Grk < Efh + 2
i

�i <1

where �i are the distinct diagonal entries of the matrix
diag(
h; . . . ;
h+q�1), and Efh is the finite upper bound
on the error induced in the balanced truncation of the finite
horizon part of G and is derived by applying [2, Th. 2] to-
gether with Theorem 3 to attain the tightest bound possible.

Remark 8: The bound on the error induced in the balanced trunca-
tion of the periodic part of G is derived in [2], [4], [8], and [9]. We

Fig. 1. Translational system.

can further employ the model reduction method of [10] to systemati-
cally reduce the periodic part ofG and potentially obtain a better error
bound.

VI. EXAMPLE

Consider the four-mass system shown in Fig. 1. The state variable
xi denotes the position of mass mi with respect to a fixed reference
for i = 1; 2; 3; 4. The masses are time-varying and are assumed to
move horizontally on frictionless bearings. The springs and dashpots
are linear. The springs are undeflected when xi = 0 for all i. The con-
trol inputs are the horizontal forces u1 and u2 applied to masses m2

and m4, respectively. Suppose the measurable outputs are only posi-
tions x1 and x3, then the continuous-time state–space realization of
this system is given by

_x(t) =Ac(t)x(t) +Bc(t)u(t)

y(t) =Ccx(t)

where the state x = (x1; x2; x3; x4; _x1; _x2; _x3; _x4) and input u =
(u1; u2) are column vectors, and

Ac=
04�4 I4

Ac Ac

Bc =
04�2
Bc

Cc = [Cc 02�4 ]

Ac =

� k +k
m

k

m
0 0

k

m
�k +k

m

k

m
0

0 k

m
�k +k

m

k

m

0 0 k

m
� k

m

Ac =

� b

m
0 0 0

0 � b

m

b

m
0

0 b

m
� b

m
0

0 0 0 0

Bc =

0 0
1
m

0

0 0

0 1
m

Cc =
1 0 0 0

0 0 1 0
:

The corresponding discrete-time model obtained by zero-order hold
sampling is given by

xk+1 =Akxk +Bkuk

yk =Ckxk

where xk = x(kT ), T being the sampling period and k a nonnegative
integer, Ak = � ((k + 1)T; kT ), �(�; �) being the state transition ma-
trix, Ck = Cc for all k, and

Bk =
(k+1)T

kT

� ((k+ 1)T; �)Bc(�)d�:

Set the initial state x0 = 0, the sampling period T = 1, the spring
constants k1 = k3 = 100 and k2 = k4 = 104, and the friction
coefficients b1 = b3 = 10. We assume that the masses exhibit
eventually time-invariant variation, namely each starting at some
initial value and then decreasing linearly with time to some final
permanent value after, say, t = 10. Note that the purpose of this
example is to show the usefulness of our error bounds, and for
that purpose, we appropriately choose the initial and final values
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of the masses as follows: (m1;m2; m3;m4)t=0 = (3; 67; 96; 64)
and (m1;m2;m3;m4)t=10 = (1; 39; 24; 3). Thus, the resulting
discrete-time LTV system is a (10,1)-eventually periodic system of
`2-induced norm equal to 0.4339.

This system is stable and accordingly the corresponding Lyapunov
strict inequalities admit positive definite solutions. Since the error
bound is clearly dependent on these solutions, we need to make sure
that such solutions satisfy some criterion that yields reasonable error
bounds, for example, selecting the solution with the minimum trace.
Hence, we solve the following semidefinite programming optimization
problem:

minimize :
k=10

k=0

(traceXk + trace Yk)

subject to :AkXkA
�

k �Xk+1 +BkB
�

k � 0

A�kYk+1Ak � Yk + C�kCk � 0

Xk; Yk � 0; for all k = 0; 1; . . . ; 10

withX11 = X10 Y11 = Y10: (12)

Let Xk = P �kPk and Yk = Q�kQk be the Cholesky factorizations of
the generalized gramians for all k = 0; 1; . . . ; 10. Then, performing a
singular value decomposition on QkP

�

k , namely QkP
�

k = Uk�kV
�

k ,
we compute the balancing state transformation matrix Tk and its in-
verse as

Tk = P �k Vk�
�1=2
k T �1k = �

�1=2
k U�kQk

and consequently obtain the balanced system realization (T �1k+1AkTk ,
T �1k+1Bk , CkTk) for k = 0; 1; . . . ; 10, where T11 = T10.

Since the spring constants k2; k4 � k1; k3, it is very likely that
four of the states can be truncated at all time instants without inducing
any significant error. Indeed, the actual error for such a truncation is
kG�Grk = 4:8140 � 10�4, which is about 0.11% of kGk. Re-
calling the partition in (4) with � given before, the singular values cor-
responding to the four states that will be truncated are given below in a
concise form: �
 = [!0 !1 � � � !10 ] = 10�5�[S1 S2 ], where

S1=

31:727 24:405 20:625 40:284 28:086 67:603

24:908 15:435 17:993 26:62 27:445 30:539

21:354 14:616 16:692 20:868 16:843 29:334

10:91 14:39 5:2764 6:5922 13:854 6:6306

S2=

33:993 60:91 37:019 70:889 49:923

31:666 36:043 36:446 44:082 47:929

26:241 33:613 24:311 38:968 32:548

17:548 6:6454 18:043 8:0987 9:7647

and each column !k is the main diagonal of the corresponding ma-
trix 
k. Since we assume zero initial conditions, we can truncate the
states at k = 0 without inducing any error and, hence, we need not
account for the singular values of the first column w0 when computing
the error bound. The last columnw10 corresponds to the time-invariant
part of the system, and the error bound associated with the truncation
of states in this part is given by the standard “twice the sum of the tail”
formula, namely 2�(49:923+ 47:929 + 32:548 + 9:7647)�10�5=
2:8033�10�3. As for the finite horizon part, we only need to consider
the singular values of 
̂ = (!1; !2; . . . ; !9)when computing the error
bound, which we will do using both the method of [2] and that of this
note.

First, there are no equal singular values in 
̂, and so we will apply
[2, Th. 2] to truncate one state at a time over the finite horizon starting
with the last state of the balanced system. For completeness, we will
briefly demonstrate how to apply this theorem in such a scenario. So,
given a vector of singular values v = (v1; v2; . . . ; vs) for some integer

s � 1, suppose that v1 cannot be considered as a local maximum and
vs cannot be considered as a local minimum. Then, vector v has m
local maximums vmax;i andm local minimums vmin;i for some integer
m � 0, and the upper bound on the error induced in truncating the state
corresponding to this vector is 2�Sv , where Sv = v1 when m = 0,
and if m > 0, then Sv = v1

m
i=1(vmax;i=vmin;i). Also, sometimes

partitioning this vector into smaller ones and applying the preceding
argument recursively to each of these vectors might result in tighter
error bounds. We will show here how to effectively use the result of
[2] to obtain the smallest upper bound possible on the error induced
in truncating the eighth state of the balanced system. Note that, in this
case, the singular values corresponding to this state are given in the last
row of 
̂. If we are to apply [2, Th. 2] to truncate this state in one step,
then the corresponding error bound given by [2] would be

2�14:39� 13:854

5:2764
� 17:548

6:6306
� 18:043

6:6454
� 10�5� 5:43� 10�3:

This could be improved significantly if we truncate this state in four
steps and accordingly divide the bottom row of the matrix 105 � 
̂
into the following four vectors: [14.39], [ 5:2764 6:5922 13:854 ],
[ 6:6306 17:548 6:6454 ], and [ 18:043 8:0987 ]. Then, applying
the aforesaid theorem recursively to truncate the state over time inter-
vals corresponding to these vectors, we obtain the following improved
bound:

2� 14:39 + 13:854 + 6:6306� 17:548

6:6306
+ 18:043 � 10�5

which is equal to 1.2767�10�3. This is an improvement by a factor
of 4.25. The error bounds given by [2] for truncating the seventh,
sixth, and fifth states of the balanced system over the finite horizon
are 1.4924�10�3, 8.8164�10�4, and 4.6274�10�3, respectively.
Thus, the overall error bound for truncating the last four states over
the finite horizon is 8.2782�10�3.
To apply our main result for this finite horizon truncation, we only

need to consider the first row in 
̂. We divide the elements of this row
into the following three disjoint sets:

f1 = f20:625� 10�5; 24:405� 10�5; 28:086� 10�5g
f2 = f33:993� 10�5; 37:019� 10�5; 40:284� 10�5g
f3 = f60:910� 10�5; 67:603� 10�5; 70:889� 10�5g:

Then, the error bound as given in (6) has the value

10�5 �
p
2

3

(28:086)+
p
2

3

(40:284)+
p
2

3

(70:889)

which is equal to 3.9389�10�3, less than half the value of the error
bound given by [2]. If we are to ignore the last three states of the bal-
anced system, and focus on the truncation of the fifth state over the
finite horizon, then our error bound (� 3:9 � 10�3) and that of [2]
(� 4:6 � 10�3) are relatively close. Clearly, the advantage that our
method has in this case over that of [2] is that in computing our error
bound we do not need to account for the singular values corresponding
to the last three states, which happen to contribute significantly to the
error bound obtained by applying [2, Th. 2]. This example and others
can be found at http://legend.me.uiuc.edu/~mazen/ltv_errbnd/, along
with the matlab code used to generate them.
Of course, the preceding example is carefully chosen to highlight the

usefulness of our result. In fact, it is quite obvious that if the sequence
of 
k is large or infinite, then our result might give very conservative
bounds, and hence, in general, this result is not to be used exclusively
but rather in conjunction with those of [1] and [2]. The most appealing
feature about the main result here is that when truncating lots of states
over relatively small time intervals, we only need to account for the
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singular values corresponding to one state when computing the error
bound, as demonstrated in the preceding example. This is particularly
an advantage over the result of [2] when the singular values excluded
in our method contribute significantly to their error bound.

Last, we note that, in computing the error bounds here, solving the
optimization problem (12) is the only step that might require heavy
computation. As for calculating useful bounds from the singular values,
while very simple in this case because of the small finite horizon (see
Matlab code), it can become quite challenging in the case of large fi-
nite horizons. This is obvious as the results of [1], [2] as well as ours
generally give different error bounds depending on how the theorems
are applied. This evokes a very interesting research problem, namely
developing a fast computational algorithm that effectively applies these
results to calculate useful bounds.

VII. CONCLUSION

This note provides a complementary result to those of [1] and [2].
Its advantages are demonstrated via an example, in which our result
gives tighter bounds on the error resulting from the balanced trunca-
tion of a four-mass translational system exhibiting eventually periodic
dynamics.
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A Solvable Lie Algebra Condition for Stability of Linear
Multidimensional Systems

Tianguang Chu, Cishen Zhang, and Long Wang

Abstract—This note analyzes exponential stability of a class of linear
discrete multidimensional systems. Using a multidimensional comparison
principle for estimating the system componentwise exponential conver-
gence and a solvable Lie algebra condition, a sufficient condition for
exponential stability of linear multidimensional systems is presented.
The stability condition can be easily examined by computing the system
matrices in finite steps. This is demonstrated by an example.

Index Terms—Comparison method, exponential stability, multidimen-
sional systems, solvable Lie algebra.

I. INTRODUCTION

Stability and convergence properties of multidimensional systems
have been a fundamental problem in theory and applications of control
systems and signal processing and attracted considerable attention in
the last two decades, e.g., [1]–[11], [13]–[15], [18]–[20] and the ref-
erences therein. In this note, we study exponential stability of the fol-
lowing linear m-dimensional (m-D) system:

x(k) =

m

l=1

Alx(k � el) (1)

where x(k) 2 n is the local state indexed by anm-tuple of nonnega-
tive integers k = (k1; . . . ; km),Al 2 n�n is the statematrix, el is the
lth unitm-vector such that the index k�el = (k1; . . . ; kl�1; . . . ; km).
The initial condition of the system is x(0) 2 n for k = (0; . . . ; 0).
It is noted that, for the special case m = 2, the m-D model (1) is in
the homogenous form of the well known Fornasini–Marchesini second
model.
Them-D system (1) is called stable if for any initial condition x(0),

the state x(k) converges asymptotically to zero as k1 + � � � + km ap-
proaches infinity. It is called exponentially stable if the state converges
at an exponential rate.
It is well known that the stability of a 1-D linear system can be

guaranteed by (Schur) stability of its coefficient matrix, i.e., A1 of the
system (1) for the case m = 1. However, it has been known that even
for a 2-D system in the form (1) with m = 2, its stability cannot be
easily analyzed, in general, from the system matrices A1 and A2.
For a class of m-D systems, it is most desirable to obtain condi-

tions for system stability directly from the system matrices. In [19], it
is shown that if the entries of A1 and A2 are all nonnegative, then the
stability analysis of the 2-D system is greatly reduced to checking the
stability of the matrix A1 + A2. This result was further extended to
m-D systems recently in [13] by means of diagonal Lyapunov func-
tion argument. The results on nonnegative systems may be of practical
interest in certain biological, physical, and economical problems [19].
In this note, we present a result on exponential stability ofm-D sys-

tems using a comparison method and a solvable Lie algebra condition
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