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1 Introduction

This paper deals with the model reduction of nonstationary linear parameter-
varying (NLPV) systems. Our interest in LPV models is motivated by the de-
sire to control nonlinear systems along prespecified trajectories. LPV models
arise naturally in such scenarios as a method to capture the possible nonlinear
dynamics, while maintaining a model that is amenable to control synthesis.
Frequently, when pursuing such an LPV formulation, one ends up with models
of relatively large dimension. Accordingly, finding control syntheses for such
models, which usually involves solving a number of linear operator inequalities
as discussed in [5], requires substantial computation. For this reason, develop-
ing a theory that provides systematic methods of approximating such models
is beneficial.

In the paper, we utilize the theory of generalized gramians to define the
notion of balanced realizations for NLPV systems. We also examine the bal-
anced truncation method in detail and derive error bounds for such a reduction
process. The contributions of the paper are as follows:

• generalization of the balanced truncation model reduction procedure to
the class of NLPV systems;

• several results on the worst-case balanced truncation error. These results
when restricted to the purely time-varying case (i.e., no parameters) pro-
vide the least conservative error bounds currently available in the litera-
ture;

• operator theoretic machinery is developed in the context of standard ro-
bust control tools for working with NLPV models.

Our paper deploys a combination of recent work on NLPV models in [5]
and new work on model reduction using balanced truncation for standard
LTV systems in [13, 18]. The basic approach is motivated by the work in [1]
on the generalization of balanced truncation to stationary multidimensional
systems, and that in [12] on discrete time model reduction of standard LTI
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systems. The basic approach behind balanced truncation originates in [16],
and the by-now famous error bounds associated with this method in the LTI
case were first demonstrated in [3, 11]. The NLPV models used here are the
natural generalization of LPV models, first introduced in [15, 17], to the case
of nonstationary systems.

The paper is organized as follows: we begin with a section which establishes
notation and collects some needed definitions; in Section 3 we introduce NLPV
models and discuss two forms of stability; Section 4 provides the balanced
truncation procedure and proves the main results of the paper; we conclude
with a summary statement.

2 Preliminaries

The set of real n × m matrices and that of real symmetric n × n matrices
are denoted by Rn×m and Sn respectively. The maximum singular value of a
matrix X is denoted by σ̄(X).

Given two Hilbert spaces E and F , we denote the space of bounded linear
operators mapping E to F by L(E, F ), and shorten this to L(E) when E
equals F . If X is in L(E, F ), we denote the E to F induced norm of X by
(X(E→F ; when the spaces involved are obvious, we write simply (X(. The
adjoint of X is written X∗. When an operator X ∈ L(E) is self-adjoint, we use
X E 0 to mean it is negative definite; that is there exists a number α > 0 such
that, for all nonzero x ∈ E, the inequality �x, Xx� < −α(x(2 holds, where �·, ·�
denotes the inner product and (·( denotes the corresponding norm on E. We
use E⊕F to denote the Hilbert space direct sum of E and F . If Si is a sequence
of operators, then diag(Si) denotes their block-diagonal augmentation.

The main Hilbert space of interest in this paper is formed from an in-
finite sequence of Euclidean spaces (Rn(0), Rn(1), Rn(2), . . .), and is denoted
by >2(R

n(0), Rn(1), . . .), or just >2(R
n) for short. It is defined as the sub-

space of the Hilbert space direct sum ⊕∞k=0Rn(k) consisting of elements x =
(x(0), x(1), x(2), . . .), with x(k) ∈ Rn(k), so that (x(2 =

9∞
k=0 x(k)∗x(k) <∞.

The inner product of x, y in >2(R
n) is hence defined as the sum �x, y�52 =9∞

k=0 x(k)∗y(k). If the spatial dimensions n(k) are either evident or irrelevant
to the discussion, then the notation >2(R

n) is abbreviated to >2. Also, we will
use >(Rn) to denote ⊕∞k=0Rn(k).

A key operator used in the paper is the unilateral shift Z, defined as
follows:

Z : >2 (Rn(1), Rn(2), . . .) → >2 (Rn(0), Rn(1), Rn(2), . . .)

(a(1), a(2), . . .)
Z?−→ (0, a(1), a(2), . . .).

Clearly this definition is extendable to >, and in the sequel, we will not distin-
guish between these mappings. Given a time-varying dimension n(k), we de-
fine the notation In

52
:= diag(In(0), In(1), In(2), . . .), where In(k) is an n(k)×n(k)

identity matrix.
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Following the notation and approach in [2], we make the following defini-
tions. First, we say a bounded linear operator Q mapping >2(R

m(0), Rm(1), . . .)
to >2(R

n(0), Rn(1), . . .) is block-diagonal if there exists a sequence of matrices
Q(k) in Rn(k)×m(k) such that, for all w, z, if z = Qw, then z(k) = Q(k)w(k).
Then Q has the representation diag(Q(0), Q(1), Q(2), . . .). A diagonal opera-
tor is a block-diagonal operator where each of the matrix blocks is diagonal.

Suppose F , G, R and S are block-diagonal operators, and let A be a
partitioned operator of the form

A =

�
F G
R S

�
.

Then we define the following notation:

��
A

��
:= diag

'�
F (0) G(0)
R(0) S(0)

�
,

�
F (1) G(1)
R(1) S(1)

�
, . . .

.
,

which we call the diagonal realization of A. Clearly for any given operator
A of this particular structure,

��
A

��
is simply A with the rows and columns

permuted appropriately so that

��
A

��
k

=

�
F (k) G(k)
R(k) S(k)

�
.

From this definition, it is easy to see that
��
A + B

��
=

��
A

��
+

��
B

��
and��

AC
��

=
��
A

����
C

��
hold for appropriately dimensioned operators, and similarly

that A E βI holds if and only if
��
A

�� E βI, where β is a scalar. Namely, the��•�� operation is a homomorphism from partitioned operators with block-
diagonal entries to block-diagonal operators.

3 NLPV Systems

We now briefly review NLPV models. The reader is referred to [5] for an in-
depth treatment of the theory. To start, the NLPV models of this paper are
of the form

x(k + 1) = A(δ(k), k)x(k) + B(δ(k), k)w(k)
z(k) = C(δ(k), k)x(k) + D(δ(k), k)w(k),

where A(·, ·), B(·, ·), C(·, ·), and D(·, ·) are matrix-valued functions that are
known a priori. The variable k is time, and δ(k) := (δ1(k), . . . , δd(k) ) is a
vector of real scalar parameters. In this paper, we are concerned only with
the subclass of NLPV models satisfying the condition that the dependence
of the matrix functions A, B, C, and D on the parameters δi is rational and
given in terms of a feedback coupling. Such models are commonly referred to
as LFT systems and are basically the straightforward generalization of the
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Δ(k)

G✛ ✛

✲

✛
w(k)z(k)

α(k) β(k)

Fig. 1. The interconnection of G with Δ(k)

LPV systems first introduced in [15, 17]. We now introduce a model of the
said subclass.

Let G be a linear time-varying discrete-time system defined by the follow-
ing state space equation:x(k + 1)

α(k)
z(k)

 =

Ass(k) Asp(k) Bs(k)
Aps(k) App(k) Bp(k)
Cs(k) Cp(k) D(k)

 x(k)
β(k)
w(k)

 , x(0) = 0, (1)

for w ∈ >2. The vector-valued signals x(k), α(k), β(k), z(k), and w(k) are
real and have time-varying dimensions, with the constraint that dim(β(k)) =
dim(α(k)). We denote the dimensions of these signals by n0(k), n(k), n(k),
nz(k), and nw(k) respectively. We assume that all the state space matrices are
uniformly bounded functions of time. For any scalar sequences δ1(k), . . . , δd(k)

and associated dimensions n1(k), . . . , nd(k) satisfying
9d

i=1 ni(k) = n(k), we
define the diagonal matrix Δ(k) as

Δ(k) := diag(δ1(k)In1(k), . . . , δd(k)Ind(k)) ∈ R
n(k)×n(k).

Also, we also constrain σ̄(Δ(k)) ≤ 1 for all k ≥ 0. We will be concerned with
the feedback arrangement in Figure 1, where G and Δ(k) are connected in
feedback. This system can be expressed formally by�

x(k + 1)
z(k)

�
= H(k)

�
x(k)
w(k)

�
, (2)

where H(k) is given by

H(k) =

�
Ass(k) Bs(k)
Cs(k) D(k)

�
+

�
Asp(k)
Cp(k)

�
Δ(k) (I −App(k)Δ(k))−1

�
Aps(k)
Bp(k)

�
. (3)

We will refer to the mapping w ?→ z in (2) as the system Gδ. Hence, Gδ

is a linear time-varying system with arbitrary rational state-space parameter
dependence formulated in an LFT framework, where the time-varying param-
eters δi act on the system G through the linear fractional feedback channels
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(α, β). We assume App(k) such that Sk = I −App(k)Δ(k) is invertible for all
k ≥ 0 so that the LFT in (3) is well-defined at each time k. This well-posedness
condition guarantees that there are unique solutions in > to (1).

Using the previously defined notation, clearly the matrix sequences Ass(k),
Bs(k), Cs(k), and D(k) from (1) define block-diagonal operators. The blocks
of the matrix Δ(k) naturally partition α(k) and β(k) into d separate vector-
valued channels, conformably with which we partition the following state space
matrices such that

Asp(k) =
�
A1

sp(k) A2
sp(k) · · · Ad

sp(k)
�

App(k) =

A11
pp(k) · · · A1d

pp(k)
...

. . .
...

Ad1
pp(k) · · · Add

pp(k)



Aps(k) =


A1

ps(k)
A2

ps(k)
...

Ad
ps(k)

 Bp(k) =


B1

p(k)
B2

p(k)
...

Bd
p(k)


Cp(k) =

�
C1

p (k) C2
p(k) · · · Cd

p (k)
�
,

(4)

where Ai
sp(k) ∈ Rn0(k+1)×ni(k), Aij

pp(k) ∈ Rni(k)×nj(k), Ai
ps(k) ∈ Rni(k)×n0(k),

Bi
p(k) ∈ Rni(k)×nw(k), and Ci

p(k) ∈ Rnz(k)×ni(k). The matrix sequence of each of
the elements of the state space matrices in (4) defines a block-diagonal opera-
tor; and so we construct from the sequence of each of these state space matrices
a partitioned operator, each of whose elements is block-diagonal and defined in
the obvious way. For instance, the matrix sequences A1

sp(k), . . . , Ad
sp(k) define

block-diagonal operators that compose the partitioned operator Asp. With Z
being the shift, we rewrite our system equations asx

α
z

 =

ZAss ZAsp ZBs

Aps App Bp

Cs Cp D

x
β
w

 , (5)

�
x
β

�
= diag(In0

52
, Δ1, . . . , Δd)

�
x
α

�
= Δ

�
x
α

�
, (6)

where x ∈ >(Rn0), w ∈ >2(R
nw), z ∈ >(Rnz), β = (β1, . . . , βd), α =

(α1, . . . , αd), βi, αi ∈ >(Rni), and

Δi = diag(δi(0)Ini(0), δi(1)Ini(1), δi(2)Ini(2), . . .).

Before concluding this section, we make some convenient definitions that
will be used extensively in the sequel. To start, we define Z̃ := diag(Z, I52)
and

A :=

�
Ass Asp

Aps App

�
, B :=

�
Bs

Bp

�
, C :=

�
Cs Cp

�
. (7)
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Also, we define >
(n0,...,nd)
2 := >2(R

n0) ⊕ >2(R
n1) ⊕ · · · ⊕ >2(R

nd ) and

Δ := {Δ ∈ L(>
(n0,...,nd)
2 ) : Δ is partitioned as in (6) and (Δ( ≤ 1}.

Note that the operator Z̃ = diag(Z, I52) has a conformable partitioning to
that of Δ = diag(Δs, Δp), where Δs = In0

52 
and Δp = diag(Δ1, Δ2, . . . , Δd).

3.1 Stability of NLPV Models

This section tackles the various concepts of stability that are essential to our
work. To begin we define a basic notion of stability.

Definition 21 An NLPV model is >2-stable if I−Δ ̃ZA has a bounded inverse
for all Δ ∈Δ.

Thus, there exists a unique (x, β) ∈ >
(n0,...,nd)
2 satisfying (5) and (6) if the

model is >2-stable. In such a scenario, equations (5) and (6) can be rewritten
in the form z = Gδw, where

Gδ = C(I −ΔZ̃A)−1ΔZ̃B + D ∈ L(>2(R
nw ), >2(R

nz )). (8)

At this point, we define T as the set of operators T ∈ L(>
(n0,...,nd)
2 ) that

have bounded inverses and are of the form T = diag(T0, T1, . . . , Td), where
each Ti ∈ L(>2(R

ni)) is block-diagonal so that
��
Ti

��
k

= Ti(k) ∈ Rni(k)×ni(k).
Observe that T is a commutant of Δ. Moreover, we define the subset X of T
by X = {X 5 0 : X ∈ T }.
Definition 22 An NLPV model is strongly >2-stable if there exists P ∈ X
satisfying

APA∗ − Z̃∗PZ̃ E 0. (9)

The following lemma asserts that strongly >2-stable NLPV models constitute
a subset of the >2-stable ones.

Lemma 7 A strongly >2-stable NLPV model is also >2-stable; however, the
converse is not true in general.

The proof parallels the standard case and is hence omitted.

Remark 2 We know that, under >2-stability, ((I −ΔZ̃A)−1( is bounded for
all Δ ∈ Δ. But, this boundedness is not necessarily uniform. On the other
hand, strong >2-stability guarantees that the aforementioned norm is uniformly
bounded; this is clearly shown by the following norm condition which is easily
derived:

((I −ΔZ̃A)−1( ≤ (P− 1
2 ( · (P 1

2 (
1− (P− 1

2 Z̃AP
1
2 ( <∞ for all Δ ∈Δ,

where P is any solution in X to inequality (9).
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One of the key features of strongly >2-stable NLPV models is that they
can always be represented by an equivalent balanced realization, as we will
show next. But first, we need to define the balanced realizations of an NLPV
model.

Definition 23 An NLPV system realization is balanced if there exists a di-

agonal operator Σ ∈ X satisfying

AΣA∗ − Z̃∗ΣZ̃ + BB∗ E 0, (10)

A∗Z̃∗ΣZ̃A−Σ + C∗C E 0. (11)

Lemma 8 An NLPV model can be equivalently represented by a balanced
realization if and only if it is strongly >2-stable.

Proof . Consider a strongly >2-stable NLPV model (A, B, C, D; Δ). This is
equivalent to the existence of P ∈ X satisfying (9), which in turn is equivalent
to the existence of operators X, Y ∈ X solving the generalized Lyapunov
inequalities

AXA∗ − Z̃∗XZ̃ + BB∗ E 0, A∗Z̃∗Y Z̃A− Y + C∗C E 0.

Clearly, these conditions are themselves equivalent. Now we define the oper-
ator T ∈ T by

T := Σ
1
2 U∗X− 1

2 ,

where unitary operator U ∈ T and positive definite diagonal operator Σ are
obtained by performing a singular value decomposition on X

1
2 Y X

1
2 , namely

UΣ2U∗ = X
1
2 Y X

1
2 . Then, the following holds:

TXT ∗ = (T ∗)−1Y T−1 = Σ.

The equivalent realization
$
(Z̃∗T Z̃)AT−1, (Z̃∗T Z̃)B, CT−1, D; Δ

+
as a result

is obviously balanced.

4 Model Reduction of Strongly �2-Stable NLPV Systems

This section focuses on the balanced truncation model reduction of strongly
>2-stable NLPV systems. It is divided into three subsections: the first presents
a precise formulation of the balanced truncation problem; the second gives
upper bounds on the error induced in such a reduction process; and the last
deals with eventually periodic NLPV systems and delivers guaranteed finite
error bounds for the balanced truncation of such systems.
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4.1 Balanced Truncation

Consider the balanced NLPV realization (A, B, C, D; Δ) with generalized di-
agonal gramian Σ ∈ X satisfying both of the generalized Lyapunov inequali-
ties (10) and (11). Recall that Σ is of the form

Σ =


Σ0

Σ1

. . .

Σd

 , where eachΣi =


Σi(0)

Σi(1)
Σi(2)

. . .

 ,

and Σi(k) is a diagonal positive definite matrix in Sni(k). We assume without
loss of generality that, in each block Σi(k), the diagonal entries are ordered
with the largest first. Now given the integers ri(k) such that 0 ≤ ri(k) ≤ ni(k)
for all k ≥ 0, we partition each of the matrices Σi(k) into two sub-blocks
Γi(k) ∈ Sri(k) and Ωi(k) ∈ Sni(k)−ri(k) so that

Σi =

��
Γi 0
0 Ωi

��
, (12)

where Γi and Ωi are block-diagonal operators. Note that, since ri(k) is allowed
to be equal to zero or ni(k) at any time k, it is possible to have one of the
matrices Ωi(k) or Γi(k) with zero dimension; this corresponds to the case
where either zero states or all states are truncated at a particular k. Allowing
for matrices with no entries, although a slight abuse of notation, will be very
helpful in the manipulations of the sequel. We define the operators Γ and Ω
to have a similar structure to that of Σ, namely Γ = diag(Γ0, Γ1, . . . , Γd) and
Ω = diag(Ω0, Ω1, . . . , Ωd). The singular values corresponding to the states
and parameters that will be truncated are in Ω.

At this point, we want to partition A, B and C conformably with the
partitioning of Σ. Recall from Section 3 that A, B and C have the following
forms:

A =


Ass A1

sp · · · Ad
sp

A1
ps A11

pp · · · A1d
pp

...
...

. . .
...

Ad
ps Ad1

pp · · · Add
pp

 , B =


Bs

B1
p
...

Bd
p

 , C =
�
Cs C1

p · · · Cd
p

�
,

where each of the elements of these partitioned system operators is block-
diagonal. Note further that

��
A

��
k

=


Ass(k) A1

sp(k) · · · Ad
sp(k)

A1
ps(k) A11

pp(k) · · · A1d
pp(k)

...
...

. . .
...

Ad
ps(k) Ad1

pp(k) · · · Add
pp(k)

 ,
��
B

��
k

=


Bs(k)
B1

p(k)
...

Bd
p(k)

 ,

��
C

��
k

=
�
Cs(k) C1

p(k) · · · Cd
p (k)

�
.

(13)
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Let us now focus on the matrices Ass(k), Bs(k), Cs(k) and partition them in
accordance with the partitionings of Σ0(k) = diag(Γ0(k), Ω0(k)) and Σ0(k +
1) = diag(Γ0(k + 1), Ω0(k + 1)) so that

Ass(k) =

�
Âss(k) Ass12 (k)

Ass21 (k) Ass22 (k)

�
, Bs(k) =

�
B̂s(k)
Bs2(k)

�
, Cs(k) =

�
Ĉs(k) Cs2 (k)

�
,

where Âss(k) ∈ Rr0(k+1)×r0(k), B̂s(k) ∈ Rr0(k+1)×nw(k), and Ĉs(k) ∈ Rnz(k)×r0(k).
Hence, we have

Ass =

��
Âss Ass12

Ass21 Ass22

��
, Bs =

��
B̂s

Bs2

��
, Cs =

��
Ĉs Cs2

��
,

where each of the elements is block-diagonal. Similarly, the other elements of
the system matrices in (13) are partitioned compatibly with the partitioning
of the associated Σi(k) so that

A =



��
Âss Ass12

Ass21 Ass22

�� ��
Â1

sp A1
sp12

A1
sp21

A1
sp22

��
· · ·

��
Âd

sp Ad
sp12

Ad
sp21

Ad
sp22

��
��

Â1
ps A1

ps12

A1
ps21

A1
ps22

�� ��
Â11

pp A11
pp12

A11
pp21

A11
pp22

��
· · ·

��
Â1d

pp A1d
pp12

A1d
pp21

A1d
pp22

��
...

...
. . .

...��
Âd

ps Ad
ps12

Ad
ps21

Ad
ps22

�� ��
Âd1

pp Ad1
pp12

Ad1
pp21

Ad1
pp22

��
· · ·

��
Âdd

pp Add
pp12

Add
pp21

Add
pp22

��


, B =



��
B̂s

Bs2

��
��

B̂1
p

B1
p2

��
...��

B̂d
p

Bd
p2

��


,

C =
���

Ĉs Cs2

�� ��
Ĉ1

p C1
p2

�� · · · ��
Ĉd

p Cd
p2

���
.

Then a state space realization for the balanced truncation Gδ,r of the system
Gδ is (Ar, Br, Cr, Dr; Δr) where

�
Ar Br

Cr Dr

�
=


Âss Â1

sp · · · Âd
sp

Â1
ps Â11

pp · · · Â1d
pp

...
...

. . .
...

Âd
ps Âd1

pp · · · Âdd
pp

Ĉs Ĉ1
p · · · Ĉd

p

B̂s

B̂1
p
...

B̂d
p

D

 ,

and Δr = diag(Ir0

52
, Δ̂1, . . . , Δ̂d), with Δ̂i = diag(δi(0)Iri(0), δi(1)Iri(1), . . .).

Notice that Δr is constructed from the same parameters δi as those in Δ.

Lemma 9 Suppose (A, B, C, D; Δ) is a balanced realization of Gδ. Then the
corresponding balanced truncation Gδ,r is also strongly >2-stable and balanced.

Proof . To start, there exists a unique permutation Q such that Q∗ΣQ =
diag(Γ, Ω) formally; then we have
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Q∗Z̃AQ =

�
Z̃

Z̃

� �
Ar Ā12

Ā21 Ā22

�
= Z̃2Ā, Q∗Z̃B =

�
Z̃

Z̃

� �
Br

B̄2

�
= Z̃2B̄,

CQ =
�
Cr C̄2

�
= C̄,

and Δ̄ = Q∗ΔQ = diag(Δr, Δ̄2), where (Ar , Br, Cr, Dr; Δr) is a realization of
the truncation Gδ,r, and the rest of the operators are defined in the obvious
way.

As the generalized gramian Σ satisfies both of inequalities (10) and (11),
then focusing on (10), and with the aforesaid permutation in mind, the fol-
lowing ensues:�

Ar Ā12

Ā21 Ā22

� �
Γ

Ω

� �
A∗r Ā∗21
Ā∗12 Ā∗22

�
−

�
Z̃∗Γ Z̃

Z̃∗ΩZ̃

�
+

�
Br

B̄2

� �
B∗r B̄∗2

� E 0.

This clearly gives
ArΓA∗r − Z̃∗Γ Z̃ + BrB

∗
r E 0.

Similarly, starting with (11), we can show that

A∗rZ̃
∗Γ Z̃Ar − Γ + C∗r Cr E 0.

Thus directly from the definitions of strong stability and a balanced system
we have the desired conclusion.

4.2 Error Bounds

This subsection gives upper bounds on the error induced in the balanced
truncation model reduction process. We start with the following result.

Lemma 10 An NLPV model Gδ is strongly >2-stable and satisfies the condi-
tion (Gδ( < 1, for all Δ ∈Δ, if there exists a positive definite operator V in
the commutant of Δ such that

−V 0 A∗ C∗

0 −I B∗ D∗

A B −Z̃∗V −1Z̃ 0
C D 0 −I

 E 0. (14)

This is a generalization of the sufficiency part of the Kalman-Yakubovich-
Popov (KYP) Lemma. Its proof is routine and so we do not include it here.
Note that the above inequality is necessary and sufficient in the purely time-
varying case as proved in [19]; however, in our case, it is in general only
sufficient. We will find the following notation convenient:

Gδ = Δ Q G = C(I −ΔZ̃A)−1ΔZ̃B + D,

where G =

�
Z̃A Z̃B

C D

�
and Δ ∈Δ.

(15)
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Theorem 24 Suppose that (A, B, C, D; Δ) is a balanced realization for the
NLPV system Gδ, and that the diagonal generalized gramian Σ ∈ X , satisfying
both of inequalities (10) and (11), is partitioned as in (12). If Ωi = I52 for
all i = 0, 1, . . . , d, then, for all Δ ∈ Δ, the balanced truncation Gδ,r of Gδ

satisfies the following inequality:

(Gδ −Gδ,r( < 2.

Proof . As Gδ and Gδ,r are both strongly >2-stable, then so is 1
2 (Gδ −Gδ,r).

One realization of the system 1
2 (Gδ −Gδ,r) is given in linear fractional form

by

1

2
(Gδ −Gδ,r) =

�
Δr

Δ̄

�
Q


Z̃Ar 0 1√

2
Z̃Br

0 Z̃2Ā
1√
2
Z̃2B̄

− 1√
2
Cr

1√
2
C̄ 0

 ,

where Ā, B̄, C̄, and Δ̄ are as defined in the proof of Lemma 9, and Z̃m =
diag({Ji}mi=1) where Ji = Z̃ for all i. In the sequel, we will construct a positive
definite operator V that commutes with diag(Δr, Δ̄) and satisfies inequality
(14) for this 1

2 (Gδ −Gδ,r) realization. Then, invoking Lemma 10 completes
the proof.

Given that the diagonal operator Σ ∈ X satisfies inequalities (10) and
(11), then direct applications of the Schur complement formula, along with
some permutations, guarantee the validity of the following condition:�−R1 K∗

K −Z̄∗aR2Z̄a

�
E 0,

where Z̄a = diag(Z̃2, I, Z̃2),

Ri =


Γ−1 0 0 0 0
0 Ω−1 0 0 0
0 0 Iqi

52
0 0

0 0 0 Γ 0
0 0 0 0 Ω

 , K =


0 0 0 Ar Ā12

0 0 0 Ā21 Ā22

0 0 0 Cr C̄2

Ar Ā12 Br 0 0
Ā21 Ā22 B̄2 0 0

 ,

and q1 = nw, q2 = nz. Define the invertible operators L and S by

L =
1√
2


−I 0 0 I 0
I 0 0 I 0
0 I 0 0 I

0 0
√

2I 0 0
0 −I 0 0 I

 , S =
1√
2


I I 0 0 0
0 0 I 0 I

0 0 0
√

2I 0
−I I 0 0 0
0 0 I 0 −I

 .

Multiplying the preceding condition on the left by diag(S∗, L) and on the
right by diag(S, L∗) gives the following equivalent inequality:
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LKS −Z̄∗b LR2L
∗Z̄b

�
E 0, (16)

where Z̄b = diag(Z̃3, I, Z̃). Performing the multiplications in this inequality
leads to

S∗R1S =


1
2 (Γ−1 + Γ ) 1

2 (Γ−1 − Γ ) 0 0 0

1
2 (Γ−1 − Γ ) 1

2 (Γ−1 + Γ ) 0 0 0
0 0 1

2 (Ω−1 + Ω) 0 1
2 (Ω−1 −Ω)

0 0 0 I 0
0 0 1

2 (Ω−1 −Ω) 0 1
2 (Ω−1 + Ω)

 ,

LR2L
∗ =


1
2 (Γ−1 + Γ ) 1

2 (Γ − Γ−1) 0 0 0

1
2 (Γ − Γ−1) 1

2 (Γ−1 + Γ ) 0 0 0
0 0 1

2 (Ω−1 + Ω) 0 1
2 (Ω −Ω−1)

0 0 0 I 0
0 0 1

2 (Ω −Ω−1) 0 1
2 (Ω−1 + Ω)

 ,

LKS =



Ar 0 0 1√
2
Br Ā12

0 Ar Ā12
1√
2
Br 0

0 Ā21 Ā22
1√
2
B̄2 0

− 1√
2
Cr

1√
2
Cr

1√
2
C̄2 0 − 1√

2
C̄2

Ā21 0 0 1√
2
B̄2 Ā22

 =

�
M N12

N21 Ā22

�
.

Note that, in the preceding expressions, some of the operators might contain at
certain time-instants matrices of zero dimensions. In such scenarios, the rows
and columns of which the said matrices are elements would not be present,
and the corresponding operator inequalities remain valid.

Define the operator V as

V =

1
2 (Γ−1 + Γ ) 1

2 (Γ−1 − Γ ) 0
1
2 (Γ−1 − Γ ) 1

2 (Γ−1 + Γ ) 0
0 0 1

2 (Ω−1 + Ω)

 .

Note that, since S∗R1S 5 0, then V 5 0. Also, V clearly commutes with the
operator diag(Δr, Δ̄). Recall that, by assumption, Ω = I; hence, 1

2 (Ω−1 +
Ω) = I and 1

2 (Ω−1 −Ω) = 0. With this in mind, it is not difficult to see that
inequality (16) implies that−

�
V

Inw

52

�
M∗

M −
�
Z̃∗3V −1Z̃3

Inz

52

�
 E 0.

Then, invoking Lemma 10, we get ( 1
2 (Gδ −Gδ,r)( < 1.
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Theorem 25 Given a balanced NLPV model Gδ, then, for all Δ ∈ Δ, its
balanced truncation Gδ,r satisfies the error bound

(Gδ −Gδ,r( < 2

d8
i=0

8
j

ωi,j ,

where ωi,j are the distinct diagonal entries of the block-diagonal operator Ωi.

The proof follows from scaling, Lemma 9 and repeated application of the pre-
vious theorem. Note that this error bound might involve an infinite summation
which in general may not converge to a finite number. In the following, we im-
prove on this result and derive tighter bounds. We will first consider balanced
systems where the singular values corresponding to the states and parameters
to be truncated are monotonic in time.

Before doing this it will be convenient to establish the following terminol-
ogy.

Definition 26 Given a scalar sequence αk defined on a subset W of the non-
negative integers, we define the following hold rule which extends the domain
of αk to all k ≥ 0: let kmin = min{k ≥ 0 : k ∈ W} and then set

αk =

	
αkmin , if 0 ≤ k ≤ kmin;
αq, where q := max{q ≤ k : q ∈ W}, if kmin < k.

We now have the following result.

Theorem 27 (monotonic case) Suppose that (A, B, C, D; Δ) is a balanced
realization for the NLPV system Gδ, and that the diagonal generalized gramian
Σ ∈ X , satisfying both of inequalities (10) and (11), is partitioned as in (12).
Let si(k) = ni(k)− ri(k) and define the set Fi, for i = 0, 1, . . . , d, by

Fi = {k ≥ 0 : si(k) > 0}.
Also suppose that for each i = 0, 1, . . . , d the scalar sequence ωi,k satisfies
Ωi(k) = ωi,kIsi(k) for all k ∈ Fi.
If for each i = 0, 1, . . . , d the sequence ωi,k is monotonic on Fk, then for all
Δ ∈Δ the balanced truncation Gδ,r of Gδ satisfies the following inequality:

(Gδ −Gδ,r( < 2

d8
i=0

sup
k∈Fi

ωi,k.

Proof . It is sufficient to prove the theorem for the case where only one pa-
rameter or state block is being truncated (i.e., si = 0 for all i except for
one, say j ∈ {0, 1, 2, . . . , d}), since the general case then follows simply by the
standard use of the telescoping series and triangle inequality. Also, we assume
without loss of generality that ωj,k ≤ 1 for all k ∈ Fj ; this can always be
achieved by scaling inequalities (10) and (11).
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To begin, we extend the domain of definition of ωj,k to all k ≥ 0 using
the hold rule defined in Definition 26; note that the extended sequence is
still monotonic. We now split the remainder of our proof into two separate
cases, one where this sequence is nondecreasing and the other where it is
nonincreasing.

Case ωj,k nondecreasing:
In this case, we have ωj,k ≤ ωj,k+1 for all k ≥ 0. We define the state space

transformation T ∈ T as ��
T

��
k 

= (ωj,k)
− 1

2 I. (17)

Note that, since Σ 5 0, then T is indeed bounded. This gives the following
balanced realization for Gδ:&

Ā, B̄, C̄, D; Δ
-

:=
$$

Z̃∗T Z̃
+

AT−1,
$
Z̃∗T Z̃

+
B, CT−1, D; Δ

+
. (18)

For convenient reference, we will use Ḡδ to refer to the system Gδ when the
realization in use is (18).

Our goal now is to show that this new realization is balanced. To this end,
given the state transformation T , we use (10) and (11) to arrive at

ĀΣ̄Ā∗ − Z̃∗Σ̄Z̃ + B̄B̄∗ E 0,

Ā∗Z̃∗
$
(T ∗)−1

ΣT−1
+

Z̃Ā− (T ∗)−1
ΣT−1 + C̄∗C̄ E 0, (19)

where Σ̄ = TΣT ∗. Because of the special structure of T and the fact that
ωj,k ≤ ωj,k+1 ≤ 1, it is not difficult to see that

C̄∗C̄ = (T ∗)−1C∗CT−1 F T ∗C∗CT,

Ā∗Z̃∗Σ̄Z̃Ā = Ā∗Z̃∗ (TΣT ∗) Z̃Ā F (T ∗)2Ā∗Z̃∗
&
(T ∗)−1ΣT−1

-
Z̃ĀT 2.

Then, pre- and post-multiplying inequality (19) by (T ∗)2 and T 2 respectively
and then using the above inequalities give

Ā∗Z̃∗Σ̄Z̃Ā− Σ̄ + C̄∗C̄ E 0.

Hence, Σ̄ is a diagonal gramian satisfying the generalized Lyapunov inequal-
ities for the system realization Ḡδ. Notice that, by the definition of T , we
have

Σ̄j(k) = Tj(k)Σj(k)T ∗j (k) = (ωj,k)
−1

�
Γj(k)

Ωj(k)

�
=

�
(ωj,k)

−1
Γj(k)

I

�
=

�
Γ̄j(k)

Ω̄j(k)

�
.

Thus, Ω̄j = I52 , and so, by invoking Theorem 24, we deduce that the balanced
truncation Ḡδ,r of the system Ḡδ satisfies the norm condition
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(Ḡδ − Ḡδ,r( < 2

for all Δ ∈ Δ. Now, it is not difficult to see that, because of the special
structure of T , the error system realizations Gδ − Gδ,r and Ḡδ − Ḡδ,r are in
fact equivalent, and as a result, we have

(Gδ −Gδ,r( = (Ḡδ − Ḡδ,r( < 2.

Case ωj,k nonincreasing:
A similar argument applies where here the state transformation T ∈ T is

defined as
��
T

��
k

= (ωj,k)
1
2 I.

We now consider the more general case, where singular values need not be
monotonic in time. But first, we require the following definition from [18].

Definition 28 Given a vector v = (v1, v2, . . . , vs) for some integer s ≥ 1,
suppose that v1 cannot be considered as a local maximum and vs cannot be
considered as a local minimum. Then vector v has m local maxima vmax,i and
m local minima vmin,i for some integer m ≥ 0, and the max-min ratio of v,
denoted Sv, is defined as

Sv = v1

m2
i=1

vmax,i

vmin,i
, m > 0

Sv = v1, m = 0.

Theorem 29 (nonmonotonic case) Given a balanced realization
(A, B, C, D; Δ) for the NLPV system Gδ, suppose that a diagonal operator
Σ ∈ X satisfies both of inequalities (10) and (11) and is partitioned as in
(12), where, for all i = 0, 1, . . . , d and k ∈ Fi = {k ≥ 0 : si(k) > 0} we have
Ωi(k) = ωi,kIsi(k), with si(k) := ni(k)− ri(k). Define the vector ω̂i to consist
of the elements ωi,k for k ∈ Fi.
If for each i = 1, . . . , d we have dim(ω̂i) <∞, then for all Δ ∈Δ the balanced
truncation Gδ,r of Gδ satisfies the following inequality:

(Gδ −Gδ,r( < 2

d8
i=0

Sω̂i
.

The proof below uses the same idea as that of Theorem 27. Basically, we need
to define some state space transformation that results in a balanced realization
for the system Gδ where the diagonal gramian Σ̄ solving the generalized Lya-
punov inequalities for this realization is such that Ω̄j = I52 . Then, invoking
Theorem 24 completes the proof. The choice of this state space transformation
used is inspired by that of the monotonic case.

Proof . As with the proof of Theorem 27 it is sufficient to prove the result for
the case where the only Ωi that has non-zero dimension is Ωj for some fixed
j in {0, 1, . . . , d}; without loss of generality we assume that ωj,k ≤ 1 for all k.
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To keep the notation simple, we suppress the subscript j in ωj and ω̂j .
The vector ω̂ is of the form

ω̂ = (ωk1 , ωk2 , . . . , ω̂min,1, . . . , ω̂max,1, . . . . . . , ω̂max,m, . . . , ωks
),

corresponding to values of the sequence ωk evaluated at the ordered time
points

(k1, k2, . . . , kmin,1, . . . , kmax,1, . . . , kmax,m, . . . , ks).

The denoted local minima and maxima of the vector ω̂ are as defined in
Definition 28. We now use the hold rule of Definition 26 to extend the sequence
ωk to all k ≥ 0; the maxima and minima of ωk are illustrated below.

ωks

ωk1

ω̂min,1

ω̂max,1

ω̂min,2

ω̂max,2

ω̂max,m

We define the state space transformation T ∈ T as

��
T

��
k

=

������������������������

ω
1
2

k1
I, for k = 0, 1, . . . , k1 − 1,

ω
1
2

k I, for k = k1, k1 + 1, . . . , kmin,1,

ωmin,1ω
− 1

2

k I, for k = kmin,1 + 1, . . . , kmax,1,

ωmin,1ω
−1
max,1ω

1
2

k I, for k = kmax,1 + 1, . . . , kmin,2,
...

...

ρω
1
2

k I, for k = kmax,m + 1, . . . , ks,

ρω
1
2

ks
I, for k = ks + 1, ks + 2, . . .,

where ρ =
3m

i=1 ωmin,iω
−1
max,i. Also, define P, Q ∈ T such that

��
P

��
k

= ω
1
2

k I

and Q = TP−1. It is not difficult to see that the constituent scalars of operator
T define a nonincreasing sequence, and so do those of operator Q and those
of operator QP 2. Then, given the equivalent realization

&
Ā, B̄, C̄, D; Δ

-
=$$

Z̃∗T Z̃
+

AT−1,
$
Z̃∗T Z̃

+
B, CT−1, D; Δ

+
of the system Gδ, which we de-

note for ease of reference by Ḡδ, and because of the special structure of T and
the assumption that ωj,k ≤ 1, the following ensues:

ĀΣ̄Ā∗ − Z̃∗Σ̄Z̃ + P−2Q−1B̄B̄∗(Q∗)−1(P ∗)−2 E 0,

Ā∗Z̃∗Σ̄Z̃Ā− Σ̄ + Q∗C̄∗C̄Q E 0,
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where Σ̄ = (P ∗)−1ΣP−1. Notice that P−2Q−1 6 ω−1
k1

I and Q 6 ρI. Thus,

the diagonal operator Σ̄ satisfies the generalized Lyapunov inequalities (10)
and (11) for the realization (Ā, ω−1

k1
B̄, ρC̄, D; Δ). As Ω̄j = I52 , then, invoking

Theorem 24, we get
ω−1

k1
ρ(Ḡδ − Ḡδ,r( < 2.

Finally, the special structure of operator T and the fact that Sω =
&
ω−1

k1
ρ
-−1

lead to
(Gδ −Gδ,r( = (Ḡδ − Ḡδ,r( < 2Sω.

We remark that Theorem 25 generalizes the LTV result in [14] to the NLPV
framework. Also, Theorems 27 and 29 are mainly generalizations of their LTV
counterparts in [18], with the important exception that the truncations in the
theorems need not be restricted connected intervals. To illustrate how to apply
these results, we consider the following hypothetical example. Suppose we are
to truncate the states corresponding to the sequence Ω0(k) = ω0,kIs0(k) for
k ∈ [1, 9], where

{ω0,k}9k=1 = {1, 0.75, 2, 1.25, 3, 1.75, 4, 2.25, 5} .

Then the corresponding error bound obtained from Theorem 25 is

2× (1 + 0.75 + 2 + 1.25 + 3 + 1.75 + 4 + 2.25 + 5) = 42.

This is exactly the same bound that the main result of [14] would give assum-
ing a standard LTV system. If we are to apply Theorem 29 to truncate the
states in one step, then we obtain the error bound

2× 1× 2

0.75
× 3

1.25
× 4

1.75
× 5

2.24
≈ 65.

This bound is quite conservative and can be significantly improved if we trun-
cate the states in three steps and accordingly divide the sequence ω0,k into the
following: {1, 0.75, 2, 1.25}, {3, 1.75, 4, 2.25}, and {5}. Then, applying Theo-
rem 29 recursively, we obtain the improved error bound

2×
'

1× 2

0.75
+ 3× 4

1.75
+ 5

.
≈ 29.

This can also be obtained from the results of [18] if the system in question is
a standard LTV system. But, in our case, we can actually further improve on
the last bound by dividing the sequence ω0,k into the two monotonic sequences
{1, 2, 3, 4, 5} and {0.75, 1.25, 1.75, 2.25} and then applying Theorem 27 twice
to get the error bound 2× (5 + 2.25) = 14.5.
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4.3 Eventually Periodic LPV Systems

This subsection focuses on the balanced truncation of eventually periodic LPV
systems. These systems are aperiodic for an initial amount of time, and then
become periodic afterwards. One scenario in which they originate is when
parametrizing nonlinear systems about eventually periodic trajectories. Such
trajectories can be arbitrary for a finite amount of time, but then settle down
into a periodic orbit; a special case of this occurs when a system transitions
between two operating points. In addition to that, eventually periodic systems
naturally arise when considering problems involving plants with uncertain
initial states. Note that both finite horizon and periodic systems are subclasses
of eventually periodic systems. We refer the reader to [6–8] for some useful
results on eventually periodic models. We now give a precise definition of an
eventually periodic operator.

Definition 30 A block-diagonal mapping P on >2 is (h, q)-eventually peri-
odic if, for some integers h ≥ 0, q ≥ 1, we have

Zq((Z∗)hPZh) = ((Z∗)hPZh)Zq,

that is P is q-periodic after an initial transient behavior up to time h. More-
over, a partitioned operator, whose elements are block-diagonal, is (h, q)-
eventually periodic if each of its block-diagonal elements is (h, q)-eventually
periodic.

Theorem 31 Suppose that state space operators A, B, and C are (h, q)-
eventually periodic. Then solutions X, Y ∈ X satisfying Lyapunov inequal-
ities (10) and (11) exist if and only if (h, q)-eventually periodic solutions
Xeper , Yeper ∈ X exist.

The outline of the proof is as follows: first, employ a similar averaging tech-
nique to that used in [2] to show that the periodic part of any of the gen-
eralized Lyapunov inequalities admits a q-periodic solution if feasible, then,
having established that, the above result follows from scaling.

Thus, if the system is strongly >2-stable and (h, q)-eventually periodic,
then we can construct an (h, q)-eventually periodic balanced realization with
an (h, q)-eventually periodic diagonal gramian Σ ∈ X satisfying Lyapunov
inequalities (10) and (11).

Theorem 32 Suppose that system Gδ is an (h, q)-eventually periodic system
with a balanced realization (A, B, C, D; Δ). Then the following hold:

(i) There exists an (h, q)-eventually periodic diagonal operator Σ ∈ X , parti-
tioned as in (12), satisfying both of the generalized Lyapunov inequalities
(10) and (11);

(ii) The balanced truncation Gδ,r of Gδ is balanced and satisfies the finite error
bound
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(G−Gr( < Efh + 2

d8
i=0

8
j

ωi,j <∞,

where the scalar parameters ωi,j are the distinct diagonal entries of the
matrix diag(Ωi(h), . . . , Ωi(h + q − 1)), and Efh is the finite upper bound
on the error induced in the balanced truncation of the finite horizon part
of Gδ and is derived by applying Theorem 29.

5 Conclusions

In this paper we have introduced balanced truncation model reduction for
NLPV systems, and derived explicit error bounds for this procedure. Even
when restricted to purely time-varying systems the results obtained provide
the least conservative bounds currently available in the literature. Although
there has been considerable recent achievement in the literature on model re-
ducing nonstationary systems, which are all directly motivated by the original
LTI results in [3, 11], the authors conjecture that significantly better bounds
may be obtainable.
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