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Abstract— This paper focuses on designing distributed con-
trollers for interconnected systems in situations where the con-
troller sensing and actuation topology is inherited from that of
the plant. The main contribution of this work is new results on
general graph interconnection structures. This is accomplished
by extending our previous machinery developed for systems
with spatial dynamics on Z

n. We derive analysis and convex
synthesis conditions for design in this setting. Furthermore, the
methodology developed here provides a unifying viewpoint for
our previous and related work on distributed control.

I. INTRODUCTION

Distributed control is of considerable interest to the control
community because of its importance in large-scale systems,
and pursuit of the associated design methods has a long
history. Because of the recent emergence of many new
applications (e.g., formation flight, antenna arrays, or fluid
control) that would benefit from systematic methods for
designing distributed controllers, this class of problems has
become even more important.

Our goal here is to generalize the work in [2], which
was developed for distributed models posed on the standard
spatial grid Z

n, to the more general object of graphs. The
motivation for this generalization stems from two applica-
tions. The first is communication over networks where the
plant subsystems have an a priori prescribed communication
topology that is not a grid. The second is in connection with
control models that arise from finite element approximations,
where in general meshes can be arbitrary graphs.

We build on our previous work in [1], [2]. The devel-
opment here is closely connected with [9] and [7]. In the
former, distributed control is considered over groups that
are not necessarily abelian, and the latter paper considers
distributed control over finite graphs. The framework here
is able to capture arbitrary infinite graphs and provides a
unifying framework to view previous work. In general, the
results obtained here are given in terms of infinite operator
inequalities, but can be reduced to semidefinite programs in
the cases of infinite graphs with periodic space and time
structure or finite graphs with temporal periodicity. One
further case in which the results can be stated as semidefinite
programming problems is when the spatial and temporal
variation is eventually periodic as depicted in Figure 1. Work
on the purely time-varying case, where the term eventually
periodic was introduced, appears in [4]. In this paper, for
space considerations, we will only consider the general case,
leaving the aforesaid special cases for the journal version.
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Fig. 1. An eventually periodic graph.

II. PRELIMINARIES

The natural numbers (including zero), integers, integers
modulo m and real numbers are denoted by N0, Z, Zm and
R respectively. We use G(V,E) to denote a digraph with set
of vertices V and set of directed edges E; throughout we will
assume that the number of vertices is countable and that the
vertex degree is uniformly bounded. We use the ordered-pair
(i, j) to denote the element of E corresponding to an edge
directed from vertex i ∈ V to vertex j ∈ V . We will use s(G)
to denote the maximum over the indegrees and outdegrees
of the graph; namely,

s(G) := max
k∈V

{m(k), p(k)},

where m(k) and p(k) denote the indegree and outdegree
of a vertex k ∈ V respectively. We will call a bijection
σ : V → V a permutation of V . A subset C of V is a cycle
of the permutation σ if there exist an integer 1 ≤ m ≤ ∞
and a bijection β : C → Zm such that

β ◦ σ(v) = (1 + β(v)) mod m.

Note that here by m = ∞ we mean Zm is simply the integers
Z. It is easy to show that the family of cycles of σ, denoted
Ci, are countable in number, disjoint, and that V =

⋃
i Ci.

We also define the set G as

G = Z × V = {k̄ = (t, k) | t ∈ Z and k ∈ V }.

If we have two vectors of real numbers x and y, the notation
x ≤ y will be used to mean that the inequalities xj ≤ yj

hold for all indices j; if x and y are infinite sequences, we
adopt a similar pointwise meaning. The maximum singular
value of a matrix M will be denoted by σ̄(M). Given
a symmetric matrix H , its inertia in(H) is the triplet
(in+(H), in0(H), in−(H)) giving the number of positive,
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Fig. 2. Closed-loop system

zero, and negative eigenvalues of H , respectively. If H is
of zero dimensions, then we set in(H) = (0, 0, 0). We now
state the following result.

Proposition 1: Suppose H is an n×n symmetric matrix,
and that Q is an n×m matrix. Then in+(H) ≥ in+(Q∗HQ)
and in−(H) ≥ in−(Q∗HQ). Furthermore, if m = n and Q

is nonsingular, then in(H) = in(Q∗HQ).
If V is a vector space, we will say that the linear mapping

M : V → V has an algebraic inverse on V if there exists
another linear mapping on V , denoted M−1, such that both
MM−1 and M−1M are equal to the identity map. Given a
Hilbert space H , we denote its associated norm by ‖·‖H and
its inner product by 〈·, ·〉H ; for convenience we frequently
suppress the subscript. The notation H ⊕W will refer to the
Hilbert space direct sum of the spaces H and W . Given two
Hilbert spaces H and F , we denote the space of bounded
linear operators mapping H to F by L(H,F ), and shorten
this to L(H) when H equals F . If X is in L(H,F ), we
denote the H to F induced norm of X by ‖X‖H→F ; when
the spaces involved are obvious, we write simply ‖X‖. The
adjoint of X is written X∗. An operator X ∈ L(H,F ) is
coercive if there exists an α > 0 such that ‖Xu‖F ≥ α‖u‖H

holds for all u in H . When an operator X ∈ L(H) is self-
adjoint, we use X ≺ 0 to mean it is negative definite; that
is there exists a number α > 0 such that, for all nonzero
x ∈ H , the inequality 〈x,Xx〉 < −α‖x‖2 holds.

Suppose that n(k̄) is an integer sequence mapping G to
the nonnegative integers N0. We define �({Rn(k̄)}) to be the
vector space of mappings w which satisfy w : k̄ ∈ G �→
w(k̄) ∈ R

n(k̄). We will frequently abbreviate this notation to
simply � when the dimensions are clear from the context. We
will use �2({R

n(k̄)}) to denote the subspace of �({Rn(k̄)})
which is a Hilbert space under the norm

‖w‖2 :=

⎛
⎝∑

k̄∈G

|w(k̄)|22

⎞
⎠

1
2

,

where | · |2 is the Euclidean norm. Furthermore, we define
�2e({R

n(k̄)}) to be the subset of � satisfying for each fixed
t ∈ Z the inequality

∑
k∈V |w(t, k)|22 < ∞. In other words,

w(t, ·) is in an �2 space for each t. Of the three spaces �, �2
and �2e just defined, we will be for most part dealing with
�2({R

n(k̄)}) in the sequel.

III. DISTRIBUTED SYSTEM FORMULATION

This paper deals with distributed systems, whose inter-
connection structures are defined by directed graphs. Specif-
ically, the different linear time-varying systems comprising

(a) (b)

Fig. 3. Graph and system

the distributed model in question correspond to the vertices
of the graph, and the interconnections between these systems
are described by the directed edges of the graph. Given such
a distributed system, say G, we will consider in this paper
a controller synthesis problem, illustrated in Figure 2, where
the controller K has a similar structure to G.

Consider a digraph G(V,E), which defines the information
structure of the distributed system under consideration, and
so, for instance, graph (a) in Figure 3 gives rise to the inter-
connected system in (b). Henceforth, we will conveniently
use the term vertex to also refer to a constituent system
in a distributed model. Our goal now is to present general
state-space equations which describe each of the vertices
of the distributed model. For convenience of notation, we
set s = s(G). Now, let σ1, σ2, . . ., σs be permutations on
the vertices V . We choose these with the property that if
(i, j) ∈ E, then there exists r such that σr(i) = j, and
hence σ−1

r (j) = i because of the bijective correspondence.
Example: Consider the distributed system in Figure 4(a). We
can use the graph in Figure 4(b) to represent this system.
Here, s = maxk{m(k), p(k)} = max{2, 2} = 2, and we
can define the permutations σ1 and σ2 for each vertex k as

k = 1
σ1(1) = 2
σ2(1) = 3

k = 2
σ1(2) = 3
σ2(2) = 1

k = 3
σ1(3) = 4
σ2(3) = 4

k = 4
σ1(4) = 1
σ2(4) = 2

We will regard the interconnections between the systems
G(k) as states when formulating the system equations, and
accordingly we define our state-space model as follows:⎡
⎢⎢⎢⎣

x0(t + 1, k)
x1(t, σ1(k))

...
xs(t, σs(k))

⎤
⎥⎥⎥⎦ = A(t, k)

⎡
⎢⎢⎢⎣

x0(t, k)
x1(t, k)

...
xs(t, k)

⎤
⎥⎥⎥⎦ + B(t, k)

[
w(t, k)
u(t, k)

]

[
z(t, k)
y(t, k)

]
=

[
C1(t, k)
C2(t, k)

]
x(t, k) (1)

+

[
D11(t, k) D12(t, k)
D21(t, k) D22(t, k)

] [
w(t, k)
u(t, k)

]

where t ∈ Z is discrete-time and k is any vertex in V . The
input signals w and u denote the exogenous disturbances
and applied control, respectively, whereas the output signal z
denotes the exogenous errors and y the measurements. Notice
that, in the previous equations, the state vector x(t, k) is
partitioned into s+1 separate vector-valued channels, namely
x(t, k) = (x0(t, k), . . . , xs(t, k)). Then, comfortably with
these channels, we partition the state-space matrices as
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(a) (b)

Fig. 4. A distributed system over a digraph

A(k̄) =

2
64

A00(k̄) · · · A0s(k̄)
...

. . .
...

As0(k̄) · · · Ass(k̄)

3
75, B(k̄) =

2
64

B01(k̄) B02(k̄)
...

...
Bs1(k̄) Bs2(k̄)

3
75

and C(k̄) =

»
C10(k̄) · · · C1s(k̄)
C20(k̄) · · · C2s(k̄)

–
.

Throughout this work, we assume that these matrix se-
quences are uniformly bounded. We will allow matrix di-
mensions that depend on (t, k), and thus define the sequences
c(t, k), nr(t, k), nc(t, k), and b(t, k) so that, for each (t, k) ∈
Z × V , we have that C(t, k) is c(t, k) × nc(t, k), A(t, k) is
nr(t, k)×nc(t, k), and B(t, k) is nr(t, k)×b(t, k). For now,
we will assume that this model admits a unique solution x in
�2e given inputs w, u ∈ �2e, and that the associated mapping
(w, u) �→ x is causal; in the next section, we will give precise
conditions to ensure these properties.

It is important to point out that Figures 3 and 4 represent
the same system; notice however that there are two extra
edges represented by dashed arrows in Figure 4. These virtual
edges are added because, for our notation to work, the inde-
gree and outdegree of each vertex has to be equal to s. This
is necessary so that it is possible to define the permutations
σ1, . . . , σs; recall that each σi has to be defined over the
entire vertex set. Now, since the states x2(t, 4) and x2(t, 1)
correspond to non-existent interconnections, we set the row
dimensions of these states equal zero; also the associated
blocks in the state-space matrices will appropriately have
zero row or column dimensions. Although a slight abuse of
notation, this will allow for a succinct representation, and
all the manipulations and proofs in the sequel will follow
directly, namely, when we encounter matrix blocks of zero
dimensions, say in some operator inequality corresponding
to some vertex, this just means that the rows and columns
of which these blocks are elements are not present, and the
inequalities remain valid. It is worth noting, furthermore, that
in some instances, especially those involving semi-infinite
vertex arrays, it might be necessary to add virtual vertices
along with virtual edges for the notation to work.

Notice that if we define σr(i) = j, corresponding to edge
(i, j), then the associated state will be denoted by xr(t, j).
Last, as an example, we write the system equation of G(3):⎡

⎢⎢⎣
x0(t + 1, 3)

x1(t, σ1(3) = 4)
x2(t, σ2(3) = 4)

z(t, 3)

⎤
⎥⎥⎦ =

[
A(t, 3) B(t, 3)
C(t, 3) D(t, 3)

] ⎡
⎢⎢⎣

x0(t, 3)
x1(t, 3)
x2(t, 3)
w(t, 3)

⎤
⎥⎥⎦ ,

where x2(t, 4) has zero row dimension. �

A. Graph-diagonal operators

The next step is to develop operator theoretic machinery a
la [2], which will allow us to represent the system equations
of (1) in a compact operator form.

Definition 2: Let v and n be sequences mapping G to N0,
and Q be a linear mapping from �2({R

v(k̄)}) to �2({R
n(k̄)}).

Then Q is said to be a graph-diagonal operator if there
exists a uniformly bounded sequence of matrices Q(k̄) ∈
R

n(k̄)×v(k̄) such that the equality (Qw)(k̄) = Q(k̄)w(k̄)
holds for each k̄ ∈ G.
Graph-diagonal operators are defined similarly to hyperdiag-
onal operators, considered in [2], and both are generalizations
of block-diagonal operators.

As in the case of hyperdiagonal operators in [2] and block-
diagonal operators in [3], we generalize the concept of inertia
to graph-diagonal operators. Given a self-adjoint graph-
diagonal operator Q, we define its inertia to be the mapping

In(Q) : G → N
3
0 defined by In(Q)(k̄) := in(Q(k̄) ).

Similarly, we define In+(Q)(k̄) := in+(Q(k̄)) and
In−(Q)(k̄) := in−(Q(k̄)). Then, Proposition 1 generalizes
immediately to the following congruence result for graph-
diagonal operators.

Proposition 3: Suppose H and M are graph-diagonal op-
erators, with H self-adjoint. Then In+(H) ≥ In+(M∗HM)
and In−(H) ≥ In−(M∗HM). Furthermore, if M is nonsin-
gular, then In(H) = In(M∗HM).

We say that W is a partitioned graph-diagonal operator if
it has the form

W =

[
H P

R J

]
,

where H , P , R and J are graph-diagonal operators. We then
define the graph-diagonal representation of W as the graph-
diagonal operator

[[
W

]]
given by:([[

W
]]
x
)
(k̄) :=

[
H(k̄) P (k̄)
R(k̄) J(k̄)

]
x(k̄).

Clearly these concepts generalize to arbitrary partitions.
Given vector-valued sequences q̄ = (q1, . . . , qr) : G → N

r

and v̄ = (v1, . . . , vc) : G → N
c, we denote by P(q̄, v̄) the

set of partitioned graph-diagonal operators of the form⎡
⎢⎣

J11 · · · J1c

...
. . .

...
Jr1 · · · Jrc

⎤
⎥⎦ , (2)

where each Jij is a graph-diagonal operator mapping
�2({R

vj(k̄)}) to �2({R
qi(k̄)}). The following notation will

be convenient: given a partitioned graph-diagonal operator
J in P(q̄, v̄), we define p(J) := (q̄, v̄). Furthermore, if q̄

and v̄ are dependent on each other (e.g., q̄ = v̄), we will
simply set p(J) = q̄ and write P(q̄) in place of P(q̄, v̄). Also,
when the partition dimensions (q̄, v̄) are not important, we
will use the abbreviation P to denote the set of partitioned
graph-diagonal operators.

It is not difficult to see that
[[
·
]]

is a homomorphism
from P into the space of graph-diagonal operators, which is
isometric, and preserves products, addition, and ordering. We
define the inertia of a self-adjoint, partitioned graph-diagonal
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operator W by In(W ) := In(
[[
W

]]
). Clearly the definition

of graph-diagonal operators is extendable to � and �2e, and in
the sequel, we will not distinguish between these objects. We
now define a number of shift operators. For some sequence
n(k̄), we define the time shift or delay operator S0 by

S0 : �({Rn(k̄)}) → �({Rq(k̄)}), where q(t + 1, k) = n(t, k),

(S0v)(t, k) = v(t − 1, k),

and further define, for i = 1, 2, . . . , s, the spatial shift
operators Si by

Si : �({Rn(k̄)}) → �({Rq(k̄)}), where q(t, σi(k)) = n(t, k),

(Siv)(t, k) = v(t, σ−1
i (k)).

Clearly, these shifts are invertible, and it is easy to verify that
(S−1

0 v)(t, k) = v(t + 1, k) and (S−1
i v)(t, k) = v(t, σi(k))

for i = 1, 2, . . . , s. In fact, each of these shifts is also unitary,
and so the inverse is equal to the adjoint. We also define the
composite shift operator S := diag(S0, S1, . . . , Ss).

Before stating the desired equations, notice that the matrix
sequences Aij(k̄), Bir(k̄), Clj(k̄) and Dlr(k̄) in (1) define
partitioned graph-diagonal operators A, B, C and D. Then,
we can equivalently write the state-space equations (1) in
compact operator form as

x = SAx + SB

[
w

u

]
,

[
z

y

]
= Cx + D

[
w

u

]
. (3)

Then, assuming the relevant algebraic inverse exists, we can
rewrite (3) in the linear fractional form

G = C(I − SA)−1SB + D; (4)

here G designates the input-output mapping of the model (1).
Before concluding this section, it is convenient to partition

the composite shift and state-space operators in (3) along
temporal-spatial lines. Namely, let us partition the shift
as S = diag(S0, S̄), where S̄ = diag(S1, . . . , Ss), and
compatibly partition the state-space operators so that

A =

[
A00 Ā0•

Ā•0 Ā

]
and B =

[
B0

B̄

]
. (5)

IV. ANALYSIS RESULTS

This section defines the basic concepts of well-posedness
and stability for distributed systems in the form of (1). Also,
a version of the Kalman-Yakubovich-Popov (KYP) Lemma
is given for such systems, which gives sufficient conditions
for stability and contractiveness of open-loop systems.

Definition 4: A distributed model in the form of (1) is
well-posed if, given inputs in �2e, the equations (1) admit
unique solutions xi ∈ �2e for i = 0, 1, . . . , s, and furthermore
define a linear causal mapping on �2e.

Regarding the unique solutions in �2e, this can always be
guaranteed if the operator I−SA has an algebraic inverse on
⊕s

j=0�2e, as evident from (4). Moreover, causality is ensured
if this inverse is causal; this also follows from (4) since the
other operators in this equation are causal and the space of
causal operators is an algebra.

Lemma 5: The operator I − SA has an algebraic causal
inverse on ⊕s

j=0�2e, and hence the system in (1) is well-
posed, if (i) A(t, k), and all the other state-space matrices,

are equal to zero when t < 0; and (ii) the linear mapping
I − S̄Ā has an algebraic inverse on ⊕s

j=1�2e, where S̄ and
Ā correspond to the partition in (5).
The proof is basically the same as that of [2, Lemma 8].

Definition 6: We say the system in (1) is stable if it is
well-posed and, given inputs in �2, the equations (1) admit
unique solutions xi ∈ �2 for i = 0, 1, . . . , s, and further
define a linear causal mapping on �2.
In other words, the system is stable if I − SA has a causal
inverse on ⊕s

j=0�2. This ensures that G from (4) is a linear
causal map on �2. We will formulate next Lyapunov-based
tests for stability.

At this point, it is important to state some important
properties about shifts and graph-diagonal operators. To
begin, suppose that W is a graph-diagonal operator on �2.
Then both S∗

i WSi and SiWS∗
i are also graph-diagonal, and

given by the relationships
(S∗

0WS0)(t, k) = W (t + 1, k), (S0WS∗

0 )(t, k) = W (t − 1, k),

(S∗

j WSj)(t, k) = W (t, σj(k)), (SjWS∗

j )(t, k) = W (t, σ−1

j (k)),

for j = 1, . . . , s. If we define X ∈ P to be block-
diagonal with respect to its partition (also that of S), i.e.
X = diag(X0, X1, . . . , Xs), then S∗XS and SXS∗ are in
P as well. We now define the subset X of P as
X = {X ∈ P : X = diag(X0, X1, . . . , Xs),

X−1 ∈ L(⊕s
j=0�2), and X0 
 0}.

Lemma 7: Given A ∈ P , if there exists an operator X ∈
X satisfying In−(S∗XS) = In−(X) and S∗A∗XSA−X ≺
0, then I − SA has a causal inverse on ⊕s

j=0�2, and hence
the system in (1) is stable.
The proof is formally the same as that of [2, Lemma 13].

The above result provides a sufficient condition for stabil-
ity, which in general is not necessary and so some conser-
vatism is introduced into our analysis.

Lemma 8: Suppose X is in X and satisfies the inertia
condition In−(S∗XS) = In−(X). If the inequality[

SA SB

C D

]∗ [
X 0
0 I

] [
SA SB

C D

]
−

[
X 0
0 I

]
≺ 0 (6)

holds, then I − SA has a causal inverse on ⊕s
j=0�2 and

‖C(I − SA)−1SB + D‖ < 1.
The proof is formally identical to that of [2, Lemma 14].

V. SYNTHESIS

This section tackles the controller synthesis problem for
the distributed system in (1).

Definition 9: A controller K is an admissible synthesis
for plant G in Figure 2 if it ensures a stable closed-loop
system and achieves the inequality ‖w �→ z‖ < 1.

To start, the system realization (A,B,C,D) from (3)
represents the distributed system in question. To ensure well-
posedness, we assume that this realization satisfies the con-
ditions (i) and (ii) in Lemma 5. We also assume for conve-
nience that D22 = 0. Suppose this system is being controlled
by a controller K with realization (AK , BK , CK , DK ), and
state dimensions given by the sequence n̄K , i.e. n̄K =
p(AK). The closed-loop system in Figure 2 can then have
the representation (Acl, Bcl, Ccl, Dcl), where

Acl =

»
A + B2DKC2 B2CK

BKC2 AK

–
, Bcl =

»
B1 + B2DKD21

BKD21

–
,

Ccl =
ˆ
C1 + D12DKC2 D12CK

˜
, Dcl = D11 + D12DKD21.
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Clearly, the state dimensions of this closed-loop realization
are given by n̄cl := (p(A), n̄K). Defining Scl = diag(S, S),
we can write the closed-loop equations in the fractional form
w �→ z = Ccl(I − SclAcl)

−1SclBcl + Dcl.

Let Xcl be a partitioned graph-diagonal operator of the
form

Xcl =

[
X XGK

X∗
GK XK

]
∈ P(n̄cl), (7)

where X ∈ X , XGK = diag(XGK0, . . . , XGKs) ∈
P(p(A); n̄K), and XK = diag(XK0, . . . , XKs) ∈ P(n̄K).
We define the set Xcl as
Xcl := {Xcl ∈ P(n̄cl) : Xcl = X∗

cl partitioned as in (7),

X−1
cl exists, and

[
X0 XGK0

X∗
GK0 XK0

]

 0

}
.

Lemma 10: A controller K is an admissible synthesis for
the configuration in Fig 2 if there exists an operator Xcl in
Xcl such that In−(Xcl) = In−(S∗

clXclScl) and[
Acl Bcl

Ccl Dcl

]∗ [
S∗

clXclScl 0
0 I

] [
Acl Bcl

Ccl Dcl

]
−

[
Xcl 0
0 I

]
≺ 0.

(8)
Notice that, from the definition of Xcl, it is obvious that
S∗

clXclScl is a partitioned graph-diagonal operator.
The game plan now to to transform the conditions of the

above lemma into convex ones which are only dependent on
the plant data. The approach we employ is analogous to the
ones used in [6], [8], and particularly parallels that of [2]. We
commence with parameterizing the closed-loop realization:[

Acl Bcl

Ccl Dcl

]
= R + U∗QV, where Q =

[
AK BK

CK DK

]
. (9)

Note that the partitioned graph-diagonal operators R, U ,
and V depend only on the plant. We next exploit this
parametrization to rid the conditions of Lemma 10 from the
controller data. But first, we need to make the following
definition. Given symbols E1, . . . , E4, Q1, Q2, and N , we

define the notation L
([

E1 E2

E3 E4

]
, Q1, Q2, N

)
:=

N∗

{[
E1 E2

E3 E4

]∗ [
Q1 0
0 I

] [
E1 E2

E3 E4

]
−

[
Q2 0
0 I

]}
N.

Proposition 11: Suppose that Xcl ∈ Xcl and satisfies
In−(Xcl) = In−(S∗

clXclScl), and consider the partitioned
graph-diagonal operators X,Y ∈ X defined by

Xcl =

[
X XGK

X∗
GK XK

]
and X−1

cl =

[
Y YGK

Y ∗
GK YK

]
. (10)

Then, inequality (8) holds if and only if

L
([

A B1

C1 D11

]
, S∗XS,X,NX

)
≺ 0 and

L
([

A B1

C1 D11

]∗

, Y, S∗Y S,NY

)
≺ 0 both hold, (11)

where NX and NY are coercive operators with

Im NX = Ker
[
C2 D21

]
and Im NY = Ker

[
B∗

2 D∗
12

]
.

The proof is very similar to that of [2, Proposition 20].
We still require some additional convex conditions on X

and Y such that the validity of these conditions ensures the
existence of a corresponding Xcl of the desired properties.
To this end, we introduce the following.

Lemma 12: Suppose n and h are sequences of nonnega-
tive integers, and that X and Y are positive definite graph-
diagonal operators in P(n). Then, there exist operators X2,
Y2 in P(n, h), and self-adjoint operators X3, Y3 ∈ P(h)
satisfying[

X X2

X∗
2 X3

]

 0 and

[
X X2

X∗
2 X3

]−1

=

[
Y Y2

Y ∗
2 Y3

]
(12)

if and only if[
X I

I Y

]
� 0 and In+

([
X I

I Y

])
≤ n + h. (13)

Proof: Conditions (13) hold if and only if, for all k̄ ∈
G, we have[
X(k̄) I

I Y (k̄)

]
� 0, in+

([
X(k̄) I

I Y (k̄)

])
≤ n(k̄)+h(k̄).

This corresponds to the case i− = 0 in [2, Lemma 21], and
thus, by this lemma, these conditions hold if and only if there
exist matrix sequences with X2(k̄), Y2(k̄) ∈ R

n(k̄)×h(k̄) and
symmetric matrices X3(k̄), Y3(k̄) ∈ R

h(k̄)×h(k̄) such that[
X(k̄) X2(k̄)
X∗

2 (k̄) X3(k̄)

]−1

=

[
Y (k̄) Y2(k̄)
Y ∗

2 (k̄) Y3(k̄)

]

 0. (14)

Furthermore, these sequences can be chosen so that

σ̄

([
X(k̄) X2(k̄)
X∗

2 (k̄) X3(k̄)

])
≤‖X‖+‖X−Y −1‖

1
2 + 1 and

σ̄

([
X(k̄) X2(k̄)
X∗

2 (k̄) X3(k̄)

]−1
)
≤‖Y ‖ · (1+‖X−Y −1‖

1
2 )2 + 1.

This is equivalent to saying that, for all k̄ ∈ G, there exist
positive scalars α and β such that

αI 


[[
X X2

X∗
2 X3

]]
(k̄) 
 βI,

where X2, X3 are graph-diagonal operators constructed from
the associated matrices in the obvious way. This inequality,
along with (14), is equivalent to (12).

At this point, it is convenient to define the following
notation. Given an index 1 ≤ j ≤ s, we define C(j) as
the family of cycles of σj , and we denote the ith cycle
in this family by C

(j)
i , i.e. C(j) = {C

(j)
i }. With this said,

given a partitioned graph-diagonal operator W ∈ P , an index
1 ≤ j ≤ s, t ∈ Z, and C(j) = {C

(j)
i }, we define

In
j

−(W )(t, C
(j)
i ) := max

k∈C
(j)
i

(
in−{

[[
W

]]
(t, k) }

)
.

We can now state the following important result.
Lemma 13: Suppose j is an integer in {1, . . . s}, that n(k̄)

and h(k̄) are nonnegative integer sequences, and that X and
Y are in P(n). Then, there exist X2, Y2 in P(n, h), and
self-adjoint operators X3, Y3 ∈ P(h) satisfying[

X X2

X∗
2 X3

]−1

=

[
Y Y2

Y ∗
2 Y3

]
and

In−

([[
X X2

X∗
2 X3

]])
= In−

(
S∗

j

[[
X X2

X∗
2 X3

]]
Sj

)
(15)

if and only if, for each C
(j)
i ∈ C(j) and t ∈ Z,
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In+

([
X I

I Y

])
(t, k) + In

j

−

([
X I

I Y

])
(t, C

(j)
i )

≤ n(t, k) + h(t, k) holds for all k ∈ C
(j)
i . (16)

Proof: Observe that condition (15) is equivalent to

in−

([[
X X2

X∗
2 X3

]]
(t, k)

)
=in−

([[
X X2

X∗
2 X3

]]
(t, σj(k))

)
(17)

for all (t, k) ∈ Z × V .
(Only if ): From equation (17), it is immediate that, for every
t ∈ Z and C

(j)
i ∈ C(j), the equation

In
j

−

([
X X2

X∗
2 X3

])
(t, C

(j)
i ) = in−

([[
X X2

X∗
2 X3

]]
(t, k)

)
holds for all k ∈ C

(j)
i , and so, we have n(t, k) + h(t, k) =

In+

([
X X2

X∗
2 X3

])
(t, k) + In

j

−

([
X X2

X∗
2 X3

])
(t, C

(j)
i ) (18)

for all (t, k) ∈ Z × C
(j)
i . We can write the factorization[

I 0
Y Y2

]∗ [
X X2

X∗
2 X3

] [
I 0
Y Y2

]
=

[
X I

I Y

]
.

Then, by Proposition 3, we get

In
j

−

([
X X2

X∗
2 X3

])
(t, C

(j)
i ) ≥ In

j

−

([
X I

I Y

])
(t, C

(j)
i )

In+

([
X X2

X∗
2 X3

])
≥ In+

([
X I

I Y

])
for all (t, k) ∈ Z×C

(j)
i , and so the result follows from (18).

(If): Fix t ∈ Z, C(j)
i ∈ C(j). Then, from (16), there exist a

nonnegative integer q− and a sequence q+(k) such that, for
all k ∈ C

(j)
i , we have n(t, k) + h(t, k) = q+(k) + q−, and

in−

([[
X I

I Y

]]
(t, k)

)
≤ q−, in+

([[
X I

I Y

]]
(t, k)

)
≤ q+(k).

Then, by [2, Lemma 21], there exist matrix sequences
with X2(k̄), Y2(k̄) ∈ R

n(k̄)×h(k̄) and symmetric matrices
X3(k̄), Y3(k̄) ∈ R

h(k̄)×h(k̄) such that[
X(k̄) X2(k̄)
X∗

2 (k̄) X3(k̄)

]−1

=

[
Y (k̄) Y2(k̄)
Y ∗

2 (k̄) Y3(k̄)

]
and

in−

([
X(k̄) X2(k̄)
X∗

2 (k̄) X3(k̄)

])
= q− for all k ∈ C

(j)
i . (19)

We can repeat this procedure for all the other values of t ∈ Z

and C
(j)
i ∈ C(j), and then following the same argument as

that at the end of the proof of Lemma 12, we can show
that these matrix sequences can be chosen to be uniformly
bounded from below and above. This ensures that the graph-
diagonal operators specified from these sequences would
satisfy the desired invertibility and boundedness conditions.
Finally, (19) ensures equal negative inertia over each permu-
tation cycle, and hence condition (15) is also met.

Theorem 14: Given G as in (1), a vector-valued sequence
(nK0, . . . , nKs), and (n0, . . . , ns) := p(A), then there exists
an admissible synthesis K for G with realization dimensions
satisfying p(AK) ≤ (nK1, . . . , nKd) if there exist X and Y

in X such that, for each j ∈ {1, . . . , s}, C
(j)
i ∈ C(j) and

t ∈ Z, the inequality nj(t, k) + nKj(t, k) ≥

In+

([
Xj I

I Yj

])
(t, k) + In

j

−

([
Xj I

I Yj

])
(t, C

(j)
i )

holds for all k ∈ C
(j)
i , and furthermore,

L
([

A B1

C1 D11

]
, S∗XS,X,NX

)
≺ 0, (20)

L
([

A B1

C1 D11

]∗

, Y, S∗Y S,NY

)
≺ 0, (21)[

X0 I

I Y0

]
� 0, In+

([
X0 I

I Y0

])
≤ n0 + nK0,

where NX and NY are coercive operators with Im NX =
Ker

[
C2 D21

]
and Im NY = Ker

[
B∗

2 D∗
12

]
.

Proof: The inertia conditions, together with the positive
semidefinite inequality on X0 and Y0, ensure by lemmas 12
and 13 the existence of a partitioned graph-diagonal operator
Xcl ∈ Xcl satisfying In−(Xcl) = In−(S∗

clXclScl) and (10).
Then, invoking Proposition 11, the inequalities (20) and (21)
are equivalent to (8), which, by Lemma 10, implies the
existence of the desired synthesis.
The inertia conditions in the previous theorem are not con-
vex, however, they can be trivialized by assuming controllers
of sufficiently large dimensions. For j ∈ {1, . . . , s}, define

nmax
j (t, k) := max

k∈V
nj(t, k), (22)

Corollary 15: Given a nominal system G as in (1), sup-
pose there exist X and Y in X satisfying (20), (21) and[

X0 I

I Y0

]
� 0.

Then there exists an admissible controller K with realization
dimensions satisfying
p(AK) ≤ (n0, n1 + 2nmax

1 , n2 + 2nmax
2 , . . . , ns + 2nmax

s ),

where (n0, . . . , ns) := p(A) and nmax
j is defined in (22).

This corollary gives sufficient convex conditions for the
existence of an admissible synthesis. The solutions can then
be used to construct a controller; this is formally identical to
the construction in [2] except the pointwise indexing is now
over the vertices of the graph.

VI. CONCLUSIONS

This paper introduces a framework in which to consider
distributed control over infinite graphs, and provides analysis
and convex synthesis conditions for design in this setting.
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