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Abstract

This note furthers existing results on the model reduction of stableperiodic systems. It utilizes for that matter a lifting technique to
potentially attain less conservative error bounds.
� 2005 Published by Elsevier Ltd.
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1. Introduction

This note provides a supplementary method for the model
reduction of stable periodic systems. The approach proposed
herein differs from those ofLall, Beck, and Dullerud (1998),
Lall and Beck (2003), Longhi and Orlando (1999), Sandberg
and Rantzer (2004), and Varga (2000)in that balanced
truncation techniques are applied to a time-invariant refor-
mulation of the periodic system rather than the periodic
realization itself. This method proves to be especially useful
and clearly advantageous over the currently available tech-
niques when the model in question belongs to the class of
stable periodic systems of large number of states, moderate
period lengths, and relatively small number of inputs and/or
outputs. Specifically, for models of the aforementioned
class, the error bounds supplied by the proposed approach
are usually far smaller than those given by the previous
methods, for the same order reduction.
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Our treatment of periodic systems follows that ofLall
et al. (1998), where such systems are shown to have a
special structure that allows the model reduction problem
to be reduced to a finite-dimensional one, namely that of
reducing a linear time-invariant (LTI) model with an asso-
ciated uncertainty description; the latter problem is tackled
in Beck, Doyle, and Glover (1996). This note also uti-
lizes the computational procedure given inVarga (2004)
for computing the minimal periodic realization of a lifted
state-space representation. We remark that the aforesaid
procedure is an improved version of the algorithm presented
in Lin and King (1993). Further note that the procedure of
Lall et al., (1998), can be extended to the class ofeventu-
ally periodic systems, defined and studied inFarhood and
Dullerud (2002), to yield a finite sum error bound on the
model reduction of such systems. The reader is referred to
Hinrichsen and Pritchard (1990)and the references therein
for results on the model reduction of standard LTI systems.
As far as the notation is concerned, it is quite standard. The
set of realn × m matrices is denoted byRn×m. If Si is a
sequence of operators, then diag(Si) denotes their block-
diagonal augmentation. The adjoint of an operatorX is writ-
tenX∗. The normed space of square summable vector-valued
sequences is denoted by	2. Last, the notation‖P ‖	2→	2

designates the	2-induced norm of a bounded linear mapping
P on 	2.
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2. Periodic systems and balanced truncation

This section briefly reviews periodic state space systems
à la Lall et al., (1998), and further discusses the balanced
truncation of such systems. LetG be the discrete-timeq-
periodic input–output system defined by the following time-
varying difference equations for all integersk�0:

xk+1 = Akxk + Bkwk, x0 = 0,

zk = Ckxk + Dkwk, (1)

where the matricesAk ∈ Rnk+1×nk , Bk ∈ Rnk+1×mk , Ck ∈
Rpk×nk , Dk ∈ Rpk×mk and the integersnk, mk, pk are all
periodic with positive integer periodq. We define the block-
diagonal matrixÃ := diag(A0, A1, . . . , Aq−1), and simi-
larly define B̃, C̃, and D̃. In the sequel, we will use the
quartet(Ã, B̃, C̃, D̃) as a succinct representation of the pe-
riodic system realization. We define the cyclic shift matrix
Z̃ for q�2 by

Z̃ =



0 · · · 0 I

I
. . . 0
. . .

...

I 0


 , such that

Z̃∗ÃZ̃ =




A1 0
. . .

Aq−1
0 A0


 .

For q = 1, we setZ̃ = I .
It is possible to show that the spectral radius ofZ̃Ã is

strictly less than one if and only if the systemxk+1 = Akxk

is exponentially stable. Throughout the paper, we will say
a periodic state space system isstablewhen itsA-operator
satisfies this condition. At this point, we define the setX̃ to
consist of the positive definite operatorsX̃ having the form
X̃ = diag(X0, X1, . . . , Xq−1), where eachXi is a positive
definite matrix inRni×ni . Following is an important lemma
from Lall et al., (1998).

Lemma 1. The following are equivalent:

(i) the spectral radius of̃ZÃ is strictly less than one;
(ii) there existsỸ ∈ X̃ such that

ÃỸ Ã∗ − Z̃∗Ỹ Z̃ + B̃B̃∗ <0; (2)

(iii) there existsX̃ ∈ X̃ such that

Ã∗Z̃∗X̃Z̃Ã − X̃ + C̃∗C̃ <0. (3)

It is worth noting thatDullerud and Lall (1999)gives a
more general result than the above lemma, notably a version
of the Kalman–Yakubovich–Popov (KYP) lemma for the
case of periodic systems.Also, note that, in the above lemma,
the non-unique solutions̃X andỸ are usually referred to as
generalized gramians.

We now give an explicit definition of abalancedrealiza-
tion for periodic systems in terms of generalized gramians.
Note that such balanced realizations always exist for stable
periodic systems, and they are non-unique.

Definition 2. The linear periodic system realization is de-
scribed as balanced if there existsỸ , X̃ ∈ X̃ satisfying in-
equalities (2) and (3), respectively, such that

X̃ = Ỹ = �̃ = diag(�0,�1, . . . ,�q−1),

where the matrices�i are diagonal and positive definite.

The following proposition stems from Lemma 1 and Def-
inition 2.

Proposition 3. Given a stable periodic system G with
realization (Ã, B̃, C̃, D̃), then there exists a state space
transformation T̃ = diag(T0, T1, . . . , Tq−1), where Ti ∈
Rni×ni , such that the equivalent realization(Ã, B̃, C̃, D̃) =
((Z̃∗T̃ Z̃)ÃT̃ −1, (Z̃∗T̃ Z̃)B̃, C̃T̃ −1, D̃) is balanced; and
hence, there exists a diagonal matrix̃� ∈ X̃ satisfying

Ã�̃Ã
∗ − Z̃∗�̃Z̃ + B̃B̃

∗
<0,

Ã
∗
Z̃∗�̃Z̃Ã − �̃ + C̃

∗
C̃ <0.

One such state space transformationT̃ is given byTi =
�1/2

i U∗
i Y

−1/2
i for i = 0,1, . . . , q − 1, where the unitary

matrix Ui and the diagonal positive-definite matrix�i are
obtained by performing a singular value decomposition on
thematrixY 1/2

i XiY
1/2
i , namelyUi�2

i U
∗
i =Y

1/2
i XiY

1/2
i . Note

that Yi and Xi are the constituent matrices of̃Y and X̃

respectively, which, in turn, are solutions to inequalities (2)
and (3).
We now discuss balanced truncation with guaranteed error

bounds for periodic systems. We remark that these results
are first introduced inLall et al., (1998). Consider a stable
systemG with a balanced realization(Ã, B̃, C̃, D̃). As this
realization is balanced, both of the Lyapunov inequalities
(2) and (3) admit a common solution iñX, say �̃, which
is of the form�̃ = diag(�0,�1, . . . ,�q−1)>0. We assume
without loss of generality that, in each block�i , the singular
values are ordered along the diagonal with the largest first.
Now given theq-periodic integersri such that 0�ri �ni

for all i�0, we partition each of the�i blocks into two
sub-blocks�i ∈ Rri×ri and�i ∈ R(ni−ri )×(ni−ri ) so that
�i =diag(�i ,�i ). Note that, sinceri is allowed to be equal
to zero orni for each i, we are likely to have matrices
with zero dimensions, which are ill-favored mathematically.
However, such abuse of notation is adopted so as to allow
for the possibilities that either zero states or all states are
truncated at a particular time. We define the matrices�̃ and
�̃ to have a similar structure to that of̃�, namely �̃ =
diag(�0,�1, . . . ,�q−1) and �̃ = diag(�0,�1, . . . ,�q−1).
The singular values corresponding to the states that will be
truncated are iñ�.
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At this point, we partitionAi , Bi andCi conformably
with the partitioning of�i so that

Ai =
[
Âi Ai12

Ai21 Ai22

]
, Bi =

[
B̂i

Bi2

]
, and Ci = [Ĉi Ci2].

Then the state space realization for the balanced truncation
Gr of the systemG is (Ãr , B̃r , C̃r , D̃), where

Ãr = diag(Â0, Â1, . . . , Âq−1),

B̃r = diag(B̂0, B̂1, . . . , B̂q−1),

C̃r = diag(Ĉ0, Ĉ1, . . . , Ĉq−1).

The following theorem gives an error bound for such a re-
duction process.

Theorem 4. Suppose the periodic system G is stable and
balanced, and letGr be the reduced order model formed
by truncating G. ThenGr is also stable and balanced, and
further satisfies the norm condition

‖G − Gr‖	2→	2 <2(�1 + · · · + �s), (4)

where the�i are thedistincteigenvalues of̃�.

This result is an improved version of its counterpart in
Lall et al., (1998), and can be deduced fromLall and Beck
(2003); an alternative proof is given inSandberg and Rantzer
(2004). Note that, whenq = 1, in which case the system
G is LTI, then the above theorem reduces to the stan-
dard LTI result (Glover, 1984; Hinrichsen & Pritchard,
1990) on the balanced truncation method of model
reduction.

Remark 5. Given a balanced periodic realization(Ã, B̃, C̃),
if �̃ is a solution to both of Lyapunov inequalities (2) and
(3), then so are��̃ for all ��1 (as a simple example). Since
the error bound in (4) is clearly dependent on our choice of
�̃, such a choice should satisfy some criterion that yields
reasonable error bounds, for example, selecting the solution
with the minimum trace.

3. Model reduction via time-invariant reformulation

The current approach to model reduction of periodic sys-
tems differs from those adopted inLall et al., (1998), Lall
and Beck (2003), Longhi and Orlando (1999), Sandberg and
Rantzer (2004), andVarga (2000)in that the balanced trunca-
tion techniques are applied to the time-invariant reformula-
tion rather than the periodic model itself. The approach now
presented lacks some of the direct flexibility of the method

of Section 2; however, in certain cases, it provides signifi-
cantly better truncation bounds. Specifically, in the method
of Section 2, one can choose any number of available states
to truncate at each instance in the period and then calculate
an upper bound on the error incurred in the reduction pro-
cess. The approach now presented allows such a flexibility
in the number of states to be truncated at one point of the
period, but, as we will show, the number of states at other
points in time can simultaneously be reduced withno addi-
tional incurred mismatch with the original system. We will
provide explicit bounds on the dimensions at these points,
which are completely independent of the generalized grami-
ans of the system. For certain classes of stable periodic sys-
tems, the new method proposed herein will typically give
much smaller error bounds than those produced by the ap-
proach of Section 2 for the same number of truncated states.
As one of our objectives is to compare and contrast the

current reduction technique with that highlighted in Section
2, we assume herein that the periodic model in question
has a minimal realization. However it is important to note
that the theory of this section holds irrespective of this
assumption. Concerning the construction of minimal real-
izations for periodic systems, we refer the reader toVarga
(2004), which gives a significantly improved version of
the computational procedure first introduced inLin and
King (1993). The current section is divided into two subsec-
tions. The first presents the time-invariant reformulation and
establishes some properties that link this LTI system with its
corresponding periodic system. The second subsection fo-
cuses on model reduction of the aforementioned LTI system
and obtaining the associated minimal periodic realization.

3.1. Time-invariant reformulation

Suppose that(Ã, B̃, C̃, D̃) is a state space minimal real-
ization of the periodic systemG. We plan to analyze this
periodic realization by means of an equivalent linear time-
invariant representation. Noting that the periodic system
transition matrix�A(k, k0) := Ak−1Ak−2 · · ·Ak0 for k > k0
with �A(k0, k0) := I , we fix � to be some integer in the set
{0,1, . . . , q − 1}, and defineĀ� = �A(� + q,�),

B̄� = [�A(� + q,� + 1)B� · · · �A(� + q,� + q − 1)B�+q−2 B�+q−1],

C̄� =




C�
C�+1�A(� + 1,�)

...

C�+q−1�A(� + q − 1,�)


 ,

D̄� =




D� 0
F�,2,1 D�+1

...
...

. . .

F�,q,1 F�,q,2 · · · D�+q−1,


 ,
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whereF�,i,j = C�+i−1�A(� + i − 1,� + j)B�+j−1. Now
consider the time-invariant system̄G� described by the fol-
lowing equations for all integerst �0:

x̄�(t + 1) = Ā�x̄�(t) + B̄�w̄�(t), x̄�(0) = x�,

z̄�(t) = C̄�x̄�(t) + D̄�w̄�(t), (5)

wherex̄�(t) = x�+tq , and

w̄�(t) = [w∗
�+tq · · · w∗

�+(t+1)q−1]∗,
z̄�(t) = [z∗

�+tq · · · z∗
�+(t+1)q−1]∗.

This time-invariant reformulation, often called thelifted sys-
temat time�, can be viewed as a state-sampled represen-
tation of its corresponding periodic system with augmented
input and output vectors. Note that since the periodic re-
alization in question is minimal, then so is the lifted state
space representation. It is obvious that the stability ofG is
equivalent to the stability of̄G�. Also, the periodic triplet
(Ã, B̃, C̃) is stabilizable and detectable if and only if the
time-invariant triplet(Ā�, B̄�, C̄�) is stabilizable and de-
tectable. The definitions of the stabilizability and detectabil-
ity of discrete-time periodic systems as well as the proof of
the preceding structural property and others can be found in
Bittanti, Colaneri, and De Nicolao (1986, 1991)andBolzern
and Colaneri (1987).
Clearly, an LTI system is a periodic system with period

q = 1. Hence, the results and definitions of Section 2 apply
here, where those results reduce to the by-now standard re-
sults ofGlover (1984)andHinrichsen and Pritchard (1990).
At this point, we need to define additional mappings. LetPe

denote the set of positive semi-definite matrices of dimen-
sione. Recalling that the integer sequenceni gives the state
dimensions of the periodic system, we define the mappings
�b

i : Pni+1 → Pni and�f
i : Pni → Pni+1 by

�b
i (P ) = A∗

i PAi + C∗
i Ci ,

�f
i (P ) = AiPA∗

i + BiB
∗
i ,

respectively, fori = 0, . . . , q − 1. Furthermore, we define

the mappings̄�
b

� : Pn� → Pn� and�̄
f

� : Pn� → Pn� by

�̄
b

�(P ) = Ā∗
�P Ā� + C̄∗

�C̄�,

�̄
f

� (P ) = Ā�P Ā∗
� + B̄�B̄

∗
�.

We now state the following results.

Proposition 6. The following are valid for all i =
0,1, . . . , q − 1:

(i) If X, Y ∈ Pni and X�Y , then�b
u(X)��b

u(Y ) and

�f
i (X)��f

i (Y ), whereu := i − 1+ qmodq.

(ii) If the diagonal matrix�̃ = diag(�0, . . . ,�q−1) ∈ X̃

satisfies both inequalities(2)and(3), then�b
i (�v)<�i

and�f
i (�i ) <�v, wherev := i + 1modq.

Proof. To prove the first inequality in (i), note that, since the
sequencenk is q-periodic, the mapping�b

u is well-defined
onPni . Then, sinceX�Y , we haveA∗

uXAu�A∗
uYAu, and

so A∗
uXAu + C∗

uCu�A∗
uYAu + C∗

uCu follows. A similar
argument shows the second inequality.
Part (ii) follows by noting that both inequalities (2) and

(3) are block-diagonal with the required inequalities in each
of the blocks. �

Theorem 7. Suppose(Ã, B̃, C̃, D̃) is a balanced pe-
riodic realization with a diagonal generalized gramian
�̃ = diag(�0, . . . ,�q−1) ∈ X̃ satisfying both Lyapunov
inequalities(2) and (3). Then the corresponding lifted LTI
system realization at time� is also balanced and further-
more admits a common solution to both of its Lyapunov
inequalities equal to��.

Proof. We need to prove that the inequalities�̄
b

�(��)<��

and�̄
f

� (��)<�� hold. To start, we can prove by induction
that

�̄
b

�(��) = �b
�(�

b
�+1(· · ·�b

�+q−1(��) · · ·)),
�̄

f

� (��) = �f
�+q−1(�

f
�+q−2(· · ·�f

� (��) · · ·)).
Then, invoking part (ii) of Proposition 6 together with an
iterative application of part (i) leads to the desired inequal-
ities. �

3.2. Model reduction of periodic systems

Suppose that(Ã, B̃, C̃, D̃) is a balanced realization of
the periodic systemG with generalized gramians̃X and Ỹ

such thatX̃ = Ỹ = �̃ = diag(�0, . . . ,�q−1) ∈ X̃, where�̃
is a diagonal matrix. Then, by Theorem 7, the realization
of the lifted LTI systemḠ� is also balanced with diagonal
generalized gramian�� satisfying both of its corresponding
Lyapunov inequalities. Recall the assumption that the sin-
gular values of�� are ordered along the diagonal with the
largest first. Following the balanced truncation procedure of
Section 2 (which in this LTI case reduces exactly to that of
Glover (1984)andHinrichsen & Pritchard (1990)) and the
notation established there, givenr� such that 0<r� <n�,
we partition�� ∈ Rn�×n� into two sub-blocks�� ∈ Rr�×r�

and�� ∈ R(n�−r�)×(n�−r�) so that�� = diag(��,��). The
singular values corresponding to the states that will be trun-
cated are in��.
Partitioning the system matrices ofḠ� conformably with

the partitioning of��, we get

Then the state space realization for the balanced truncation
Ḡ�,r of the systemḠ� is (Ā�,r , B̄�,r , C̄�,r , D̄�). Clearly,
Ḡ�,r is a balanced stable model, and furthermore, it satisfies
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the norm condition

‖Ḡ� − Ḡ�,r‖	2→	2 <2(��,1 + · · · + ��,	),

where��,i are thedistincteigenvalues of��. Now letGr

be the reduced periodic system corresponding to the LTI
systemḠ�,r . Noting that�� is positivedefinite, it is then
immediate thatGr is stable and satisfies

‖G − Gr‖	2→	2 = ‖Ḡ� − Ḡ�,r‖	2→	2

< 2(��,1 + · · · + ��,	).

Having established this, the next step is to obtain the
minimal realization of the reduced periodic systemGr . This
problem, however, has been tackled inVarga (2004), where
an improved algorithm to that ofLin and King (1993)is
proposed for computing theminimal periodic realization of a
lifted state-space representation. We refrain from reviewing
the aforementioned computational procedure, and restrict the
following presentation to the discussion of the dimensions
of the reduced periodic model. We start by partitioning the
truncated lifted state-space matrices in accordance with the
partitioning of the augmented input and output vectors so
that

B̄�,r = [B̄0
�,r B̄1

�,r · · · B̄
q−1
�,r ],

C̄�,r =




C̄0
�,r

C̄1
�,r

...

C̄
q−1
�,r


 , D̄� =




D̄
0,0
� 0
...

. . .

D̄
q−1,0
� · · · D̄

q−1,q−1
�


 .

Similarly Lin and King (1993), andVarga (2004), we define
the following sequence of matrices fori = 0,1, . . . , q − 2:

Ki =




Ā�,r B̄0
�,r · · · B̄i

�,r

C̄
q−1
�,r D̄

q−1,0
� 0

...
...

. . .

C̄i+1
�,r D̄

i+1,0
� · · · D̄

i+1,i
�


 .

Then, fromVarga (2004), theq-periodic dimensions of the
reduced periodic realization at all the points of the pe-
riod excluding� are given byr�+i+1 = rank(Ki), for i =
0,1, . . . , q − 2. The following upper bounds on the afore-
mentioned dimensions are thus immediate:

r�+i � min


r� +

�+i−1∑
j=�

mj , r� +
�+q−1∑
j=�+i

pj , n�+i


 ,

for i = 1, . . . , q − 1. It is not difficult to show that the first
term in the above min function can be replaced with the
tighter boundr�+i−1 + m�+i−1.
We now elucidate the rationale behind the model re-

duction method given in this section. Consider the class
of stable periodic systems of moderate period lengths and
large number of states at each instance in the period with
relatively small number of inputs and/or outputs. Given a

system of such a class, we can always represent it with a
balanced periodic realization, and furthermore, find a diag-
onal generalized gramiañ� that satisfies some criterion, as
argued in Remark 5, and solves both Lyapunov inequalities
(2) and (3). We then determine the�i block with the min-
imum “sum of the tail;” say such block corresponds to the
instance� in the period, where� is a fixed integer in the set
{0,1, . . . , q − 1}. We may also further improve this mini-
mum by re-solving the aforesaid Lyapunov inequalities for
the diagonal solution with the minimum trace of��. After-
wards, we compute the lifted LTI system at�, as shown in
the first subsection of this section, and then we implement
the balanced truncation method of model reduction on this
LTI model and obtain the minimal periodic realization corre-
sponding to the truncated lifted representation, as illustrated
in the second subsection. For such a system, the reduction
in the model dimensions is significant not only at the point
� but also at all the other points in the period. Furthermore,
the associated error bound can be of a much smaller value
than that calculated for the same order reduction by the ap-
proach in Section 2. Consequently, the method herein serves
as a better guideline for the model reduction of stable peri-
odic systems of the aforementioned class.

Remark 8. In Definition 2, we make use ofgeneralized
gramians that satisfy thestrict Lyapunov inequalities (2)and
(3) to define a notion of a balanced realization for periodic
systems. However, given a stable periodic system, the lifting
approach of this paper and particularly Theorem 7 still apply
if instead the definition of a balanced realization is given in
terms of the standard controllability and observability grami-
ans which are solutions of Lyapunov equations or general-
ized gramians solving non-strict Lyapunov inequalities. Note
that as the positive definiteness of the gramians is necessary,
the minimality of the periodic system becomes a require-
ment when using standard gramians; also, in such a case, the
truncation of a balanced system is not necessarily balanced.

4. Examples

It is not difficult to construct numerical examples where
the current approach has clear advantages over the standard
approaches ofLall et al., (1998), Lall and Beck (2003),
Longhi and Orlando (1999), Sandberg and Rantzer (2004),
andVarga (2000). Specifically, we have written a MATLAB
code that generates random, stable, minimal and balanced
periodic SISO system realizations of user-specified period
lengths and constant state orders. Also, by specifying the al-
lowable reduction error as a percentage of the system norm,
the program locates the point of the period with the mini-
mum sum-of-the-tail, lifts the system at this point to obtain
the LTI reformulation, applies balanced truncation, and then
“unlifts” the truncated LTI system to get the reduced periodic
realization. Other data provided by the code are the actual re-
duction error and the upper error bound, together with their
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counterparts given by the standard approaches for the same
order reduction. The algorithm used for obtaining stable and
balanced minimal realizations is as follows: First, choose
random systemmatrices of appropriate dimensions such that
theA-matrices are all diagonal and invertible with singular
values ranging from 0.16–0.96; this guarantees stability and
minimality for moderate period lengths. Then, solve for the
gramians satisfying the Lyapunov equalities; the fact that
‖Ã‖<1, and hencẽA∗Ã< I , allows for the perturbation of
these gramians by
I for some sufficiently small positive

 to avoid any numerical inaccuracies while still maintain-
ing valid Lyapunov inequalities. Note that since the theory
herein is applicable regardless of the definition of balanced
realizations (see Remark 8), then the use of both Lyapunov
equalities and inequalities is acceptable. Lastly, using the
Cholesky factors of these gramians, we derive a balanced re-
alization. Of course the diagonal structure of theA-matrices
is generally lost after balancing. This MATLAB code can
be found athttp://legend.me.uiuc.edu/∼mazen/Lifting/. All
examples generated by this code are generally in favor of
the lifting approach. One example that we give at this Web
site pertains to a SISO system of	2-induced norm equal
to 18.7, period length equal to 10, and with 30 states at
each point of the period. For a reduced periodic model of
dimensions(ri)9i=0 = 1,2,3,4,5,6,5,4,3,2, the follow-
ing table displays the actual reduction error and upper error
bound given by the lifting and standard approaches, where
the balanced realizations are obtained as described above.

Lifting approach Standard approach

‖G − Gr‖ Error bound ‖G − Gr‖ Error bound
0.0628 0.3281 0.0630 1.2367

Clearly, the lifting approach gives a much smaller error
bound. Note that in this example, the actual errors from both
approaches are roughly equal, but this is obviously not true
in general since each approach typically yields a different
reduced model.

5. Conclusions

This paper provides a lifting approach for the model re-
duction of stable periodic systems. In the case of moderate

period lengths, large number of states, and relatively small
number of inputs and/or outputs, the error bounds given by
this approach are typically much smaller than those supplied
by the currently available balanced truncation methods for
the same order reduction.
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